• 제목/요약/키워드: $O_3$ net photosynthesis

검색결과 20건 처리시간 0.03초

Effect of $TO_3$ and $NO_2$ on Net Photosynthesis, Transpiration and Accumulation of Nitrite in Sunflower Leaves

  • Park, Shin-Young;Lee, Sang-Chul
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권2호
    • /
    • pp.121-129
    • /
    • 1999
  • Photosynthesis and transpiration rates were simultaneously measured in attached sunflower leaves(Helianthus annuusL. cv. Russian Mammoth) during exposure to $NO_2$ and $O_3$ to determine the effect of mixed gan on photosynthesis and the stomatal aperture. The application of $O_3$ alone reduced both the net photosynthetic and transpiration rates. An analysis of the $CO_2$ diffusive resistances indicated that the main cause affecting photosynthesis reduction during $O_3$ exposure was not the internal gas phase of the leaf $(rCO_2^{liq})$ but rather the liquid phase or mesophyll diffusive resistance $(rCO_2^{liq})$, suggesting that there is a very concomitant relation between photosynthetic reduction and $rCO_2^{liq}$. The application of NO2 alone caused a marked reduction of the net photosynthesis yet no significant reduction of transpiration, indicating that NO2 affects the $CO_2$ fixation processes with no inluence on the stomatal aperture. A greter reduction in the photosynthesis of sunflower plants was caused by the application of $NO_2$ alone as compared to a combination of $NO_2$ and $O_3$. $NO_2$ alone reduced the photosynthetic rate by 90%, whereas a mixture of NO2 and O3 reduced it by 50%.

  • PDF

오존 감수성 및 저항성 고추 품종의 생리생태 변화 (The Ecophysiological Changes of Capsicum annuum on Ozone-Sensitive and Resistant Varieties Exposed to Short-Term Ozone Stress)

  • 윤성철
    • 한국환경농학회지
    • /
    • 제23권3호
    • /
    • pp.128-132
    • /
    • 2004
  • 공시된 세 품종의 고추에 대한 단기간의 오존 처리로 잎에서 나타나는 전형적인 증상은 갈색의 괴사 반응이었으며, 괴사가 심했던 오존 감수성인 다보탑과 같은 농도에서 괴사가 전혀 없었던 부촌 품종을 오존 저항성 품종으로 판단되었다. 고추의 두 품종에서 오존 처리에 의해 광합성 및 기공 전도도 등의 생리생태적 저해가 뚜렷이 나타났다. 그러나 잎에서 가시피해의 정도와 생리생태적 저해 정도와의 상호 연관성으로 고추에서의 오존 저항성 기작을 설명하고자 하였으나 생리생태적 반응으로 잎에서 발생하는 오존 저항성의 기작을 설명할 수 없었다. 다만, 고추에서 오존 처리에 의한 광합성 감소는 뚜렷한 기공전도도 감소와 명반응에서 광합성 기구들의 손상에 기인한다고 여겨진다. 그러나, 암반응에서 생화학적 반응을 설명할 수 있는 A-Ci curve 상에서는 오존 처리에 따른 효과를 찾을 수 없었다.

The visible injury and physiological responses of three varieties of hot peppers to ozone

  • Kim, Bo-Sun;Yun, Sung-Chul
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.93.1-93
    • /
    • 2003
  • A growth chamber fumigation was conducted to evaluate the ozone (O3) on the physiology of three hot pepper, Capsicum annuum L. cultivars, 'dabotab', 'buchon' and 'pochungchun'. Thirty-day old plants were exposed to O3 of 120 nl 1-1 in the chambers for 8 h d-1 for 3 days. Foliar damage due to O3 was different from the varieties, 'dabotab'was most sensitive to O3, 'pochungchun' was medium, and 'buchon' was resistant. Ozone symptom on the leaves was bifacial necorsis. Photosynthesis and stomatal conductance were decreased due to O3 treatment, but they were not much different from the variety. Decreases of net photosynthesis by O3 were 56%, 40% and 35% on 'dabotab', 'buchon' and 'pochungchun', respectively Decreases of stomatal conductance by O3 were 66%, 63%, and 50% on each varieties. Ozone closed the stomata and decrease net photosynthesis on hot peppers regardless of the variety. Light curves on the three varieties were showing similar patterns that O3 damage on net photosynthesis were started at the low levels of light with or without the visible injury, Assimilation-internal CO2 concentration curves of the three cultivars were not different due to the treatment. It means there was not significant biochemical damage Inside the leaves by O3. In conclusion, ozone closed the stomata and damaged light capturing system of the pepper leaves with or without the visible damage. Although visible damage of the leaves could be a good indicator of O3 resistance, the ecophysiological change by O3 were not proportional to the amout of visible injuries

  • PDF

오존에 의한 두 품종 콩의 가시피해 및 생리적 반응 (The Visible Injury and Physiological Responses of Two Varieties of Glycine max to Ozone)

  • 윤성철;박은우
    • 한국농림기상학회지
    • /
    • 제2권4호
    • /
    • pp.167-174
    • /
    • 2000
  • 광합성이 비교적 안정적인 자연광을 이용한 가스 노출 생장상을 사용하여 황금콩과 장엽콩 두 가지 콩 품종에 3일간 150 n1 1$^{-1}$의 농도로 오존을 처리한 후 잎에 나타나는 가시피해 뿐만 아니라 광합성, 기공 전도도, 엽록소 함량 등 생리적인 반응을 측정하였다. 잎에 나타난 가시피해는 기존의 보고와 마찬가지로 미세한 구릿빛 반점이었는데 장엽콩이 황금콩에 비해 빈번히 발생하였다. 하지만 오존 처리후 광합성은 황금콩에서 약 60%감소한 반면 장엽콩에서는 13%정도여서 황금콩의 오존 피해가 더 켰다. 오존으로 인한 콩잎의 광합성 감소 원인은 기공 전도도 감소에 따른 이산화탄소 공급량의 감소와 암반응의 동화효소인 rubisco의 활성저해로 설명이 가능하였다. 하지만 오존 처리로 인해 엽록소 함량 저해는 없었고, 가시피해의 면적도 전체 잎면적에 차지하는 비중이 미미하였으므로 이들은 광합성 감소 원인이 될 수 없었다. 한편, 오존 처리 완료 24시간 후에 광합성과 기공 전도도를 측정한 결과 24시간 전과 거의 비슷하므로 오존으로 인한 광합성 저해와 기공 닫힘의 변화가 하루만에 회복되지 않았다. 장엽콩은 무처리에서도 황금콩보다 광합성이 높았고, 오존 처리시 급격한 광합성 감소나 rubisco효소 활성도 크게 영향 받지 않았으며 다만 기공 전도도만 약간 낮아졌을 뿐이었다 이러한 생리적 결과로 미루어볼 때 장엽콩은 황금콩보다 오존에 저항성 품종이라 여겨진다. 비록 가시피해는 장엽콩에서 황금콩보다 빈번하게 발생되었지만 전반적인 생리적 피해는 황금콩에서 심각하므로 가시피해만으로 오존의 저항성, 감수성을 판단하는 것은 잘못된 것이다.

  • PDF

Physiological Damages and Biochemical Alleviation to Ozone Toxicity in Five Species of genus Acer

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Kab-Yeon;Ku, Ja-Jung;Kim, Pan-Gi
    • 한국산림과학회지
    • /
    • 제96권5호
    • /
    • pp.551-560
    • /
    • 2007
  • We investigated physiological damages and biochemical alleviation of five species of genus Acer under ozone fumigation in order to assess their tolerant ability against ozone toxicity. At the end of 150 ppb $O_3$ fumigation, photosynthetic characteristics were measured, and chlorophyll contents, malondialdehyde (MDA) and antioxidative enzyme activities were analyzed in the leaves of five maple trees (Acer buergerianum, A. ginnala, A. mono, A. palmatum, and A. palmatum var. sanguineum). The reduction of chlorophyll (chl) a in ozone-exposed plants was 16.8% (A. buergerianum) to 26.7% (A. ginnala) of control plants. For the content of chi b, A. ginnala and A. palmatum var. sanguineum represented the high reduction of 26.3% and 23.6%, respectively. The highest reduction on the chi a:b ratio was observed in the leaves of A. palmatum. The reduction of net photosynthesis in five species varied from 2.4% to 37.6%. Among five species, A. ginnala showed remarkable reduction (37.6%) for net photosynthesis in comparison with control. Carboxylation efficiency differed significantly (P < 0.05) among species and between control and ozone treatment. The reduction of carboxylation efficiency was the highest in the leaves of A. ginnala (44.7%). A. palmatum var. sanguineum showed the highest increase (41.7%) for MDA content. The highest increase of superoxide dismutase (SOD) activity represented in A. palmatum (26.1%) and the increase of ascorbate peroxidase (APX) activity ranged from 16.5% (A. ginnala) to 49.1% (A. palmatum var. sanguineum). A. mono showed the highest increase (376.6%) of glutathione reductase (GR) activity under ozone fumigation and A. buergerianum also represented high increase (42.3%) of GR activity. Catalse (CAT) activity increased in the leaves of A. ginnala, A. palmatun and A. palmatum var. sanguineum under ozone exposure, whereas A. buergerianum and A. mono decreased in comparison with control plants. In conclusion, physiological markers such as chlorophyll content and photosynthesis that responded sensitively to $O_3$ in maple trees were considered as the very important indicators in order to evaluate the tolerance against $O_3$ stress, and parameters were closely related with each other. Among anti oxidative enzymes, SOD and APX might be contributed to alleviate to $O_3$ toxicity through the increase of activity in all maple trees. Therefore, these compounds can be used as a biochemical maker to assess the stress tolerance to $O_3$.

Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer

  • Lee, Joon-Soo;Lee, Dong-Yun;Lee, Jang-Ho;Ahn, In-Ok;In, Jun-Guy
    • Journal of Ginseng Research
    • /
    • 제36권4호
    • /
    • pp.461-468
    • /
    • 2012
  • In this study, photosynthetic parameters such as the net photosynthesis rate, stomatal conductance, intercellular $CO_2$ concentration, and transpiration rate were examined in selected ginseng varieties and/or lines that are resistant (Yunpoong, HTIR 1, HTIR 2, and HTIR 3) and susceptible (Chunpoong) to high temperature injury (HTI). The net photosynthesis rate increased with the increase in the light intensity in all the HTI-resistant and -susceptible ginseng lines with a light saturation point of $200\;{\mu}mol\;m^{-2}s^{-1}$, except for Yunpoong that had a light saturation point of $400\;{\mu}mol\;m^{-2}s^{-1}$. At the light saturation point, the net photosynthesis rate in July was highest in HTIR 3, at $4.2\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and was lowest in Yunpoong, HTIR 1, Chunpoong, and HTIR 2, in that order, at 1.9 to $3.7\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The net photosynthesis rate in August was highest in Yunpoong at $5.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$, and lowest in HTIR 1 and HTIR 3 ($4.5\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$) and in other lines, in that order, at 2.8 to $2.9\;{\mu}mol\;CO_2\;m^{-2}s^{-1}$. The stomatal conductance in July was highest in HTIR 3 (0.055 mol $H_2O\;m^{-2}s^{-1}$) and Yunpoong, Chunpoong, HTIR 1, and HTIR 2 were 0.038, 0.037, 0.031, and 0.017 in that orders. In August, meanwhile, HTIR 1 showed the highest as 0.075, and followed by HTIR 3, Chungpoong, and HTIR 2 with 0.070, 0.047, and 0.023, respectively. The intercellular $CO_2$ concentration at the light saturation point in July and August was much lower in HTIR 2 at 139 and $185\;{\mu}mol\;mol^{-1}$ than in the other ginseng lines at 217 to 257 and 274 to $287\;{\mu}mol\;mol^{-1}$, respectively. The transpiration rate in July and August was higher in the HTI-resistant lines of Yunpoong, HTIR 1, and/or HTIR 3 at 0.83 to 1.03 and 1.67 to 2.10 mol $H_2O\;m^{-2}s^{-1}$ than in the other ginseng lines at 0.27 to 0.79 mol $H_2O\;m^{-2}s^{-1}$ and 0.51-1.65 mol $H_2O\;m^{-2}s^{-1}$, respectively. Conclusively, all the photosynthetic parameters that were examined in this study were generally higher in the HTI-resistant ginseng lines than in the HTI-susceptible lines, except for HTIR 2, and were much higher in August than in July, especially in the resistant ginseng lines. All these results can be used to provide basic information for the selection of HTI-resistant ginseng lines and the application of cultural practices that are efficient for ginseng growth, based on the photosynthetic characteristics of the lines.

Growth and Photosynthetic Responses of Cuttings of a Hybrid Larch (Larix gmelinii var. japonica x L. kaempferi) to Elevated Ozone and/or Carbon Dioxide

  • Koike, Takayoshi;Mao, Qiaozhi;Inada, Naoki;Kawaguchi, Korin;Hoshika, Yasutomo;Kita, Kazuhito;Watanabe, Makoto
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권2호
    • /
    • pp.104-110
    • /
    • 2012
  • We studied the effects of elevated ozone ([$O_3$]) and $CO_2$ concentrations ([$CO_2$]) on the growth and photosynthesis of the hybrid larch $F_1(F_1)$ and on its parents (the Dahurian larch and Japanese larch). $F_1$ is a promising species for timber production in northeast Asia. Seedlings of the three species were grown in 16 open top chambers and were exposed to two levels of $O_3$ (<10 ppb and 60 ppb for 7 h per day) in combination with two levels of $CO_2$ (ambient and 600 ppm for daytime) over an entire growing season. Ozone reduced the growth as measured by height and diameter, and reduced the needle dry mass and net photosynthetic rate of $F_1$, but had almost no effect on the Dahurian larch or Japanese larch. There was a significant increase in whole-plant dry mass induced by elevated [$CO_2$] in $F_1$ but not in the other two species. Photosynthetic acclimation to elevated [$CO_2$] was observed in all species. The net photosynthetic rate measured at the growing [$CO_2$] (i.e. 380 ppm for ambient treatment and 600 ppm for elevated $CO_2$ treatment) was nevertheless greater in the seedlings of all species grown at elevated [$CO_2$]. The high [$CO_2$] partly compensated for the reduction of stem diameter growth of $F_1$ at high [$O_3$]; no similar trend was found in the other growth and photosynthetic parameters, or in the other species.

Ecophysiological Responses of Northern Birch Forests to the Changing Atmospheric CO2 and O3 Concentrations

  • Kawaguchi, Korin;Hoshika, Yasutomo;Watanabe, Makoto;Koike, Takayoshi
    • Asian Journal of Atmospheric Environment
    • /
    • 제6권3호
    • /
    • pp.192-205
    • /
    • 2012
  • The effects on birch (Betula spp.) of elevated carbon dioxide ($CO_2$) and ozone ($O_3$), which are both increasing in the troposphere, are surveyed in detail based on the literature. Birches establish themselves in the open field after disturbances, and then become dominant trees in temperate or boreal forests. Ecophysiological approaches include the measurement of photosynthesis, biomass, growth, and survival of seedlings and trees. Elevated $CO_2$ levels give rise to a net enhancement of the growth of birch trees, whereas high $O_3$ generally reduces growth. Although the effects of the two are opposed, there is also an interactive effect. Basic physiological responses of the single genus Betula to $CO_2$ and $O_3$ are set out, and some data are summarized regarding ecological interactions between trees, or between trees and other organisms.

Interactive Effects of Ozone and Light Intensity on Platanus occidentalis L. Seedlings

  • Kim, Du-Hyun;Han, Sim-Hee;Lee, Kab-Yeon;Kim, Pan-Gi
    • 한국산림과학회지
    • /
    • 제97권5호
    • /
    • pp.508-515
    • /
    • 2008
  • Sycamore (Platanus occidentalis L.) seedlings were grown under low light intensity and ozone treatments to investigate the role of the light environment in their response to chronic ozone stress. One-year-old seedlings of Platanus occidentalis L. were grown in pots for 3 weeks under low light (OL, $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and high light (OH, $300{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) irradiance in combination with 150 ppb of ozone fumigation. After three weeks of ozone and light treatment, seedlings were placed in ozone free clean chamber for 3 weeks for recovery from ozone stress with same light conditions to compare recovery capacity. Ozone fumigation determined an impairment of the photosynthetic process. Reduction of leaf dry weight (14%) and shoo/root ratio (17%) were observed in OH treatment. OL treatment also showed severe reductions in leaf dry weight and shoot/root ratio by 48% and 36% comparing to control, respectively. At the recovery phase, OH-treated plants recovered their biomass, whereas OL-treated plant showed reduction in leaf dry weight (52%) and shoot/root ratio (49%). OH-treated plants reached similar relative growth rate (RGR) comparing to control, whereas OL-treated plants showed lower RGR in stem height. However, there were no significant differences in response to those treatments in stem diameter RGR at the recovery phase. Ozone treatment produced significant reduction of net photosynthesis in both high and low light treatments. Carboxylation efficiency and apparent quantum yield in OL-treated plants showed significant reductions rate to 10% and 45%, respectively. At the recovery stage, ozone exposed seedlings under high light had similar photosynthetic capacity comparing to control plants. Antioxidant enzymes activities such as superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased in ozone fumigated plants only under low light. The present work shows that the physiological changes occur in photosynthesis-related parameters and growth due to ozone and low light stress. Thus, low light seems to enhance the detrimental effects of ozone on growth, photosynthesis, and antioxidant enzyme responses.

카드뮴 처리에 대한 박달나무의 가계간 생장과 광합성 차이 (Differences in Growth and Photosynthesis among Three Half-sib Families of Betula schmidtii in Response to Cd Treatment)

  • 오창영;이경준;이재천;한심희
    • The Korean Journal of Ecology
    • /
    • 제27권3호
    • /
    • pp.147-153
    • /
    • 2004
  • 본 연구는 카드뮴 처리에 대한 박달나무 유묘의 가계간 생장 차이와 광합성 특성을 구명하고자 실시하였다. 카드뮴 처리는 3가계의 박달나무 1년생 묘목에 0, 0.4, 0.8mM의 CdSO4 · H2O 용액을 이용하여 3수준으로 2개월간 실시하였다. 박달나무의 가계간 및 처리간 생장과 생리적 반응은 건중량, 상대생장율, 순양자수율 및 탄소고정효율을 이용하여 결정하였다. 0.4 mM과 0.8mM 카드뮴이 처리된 박달나무 유묘는 대조구와 비교해서 건중량과 상대생장율이 크게 감소하였으며, 박달나무 유묘의 생장 감소는 광합성 능력의 감소에 큰 영향을 받은 것으로 나타났다. 또한 순양자수율과 탄소고정효율은 카드뮴 처리로 감소하였으며, 모든 가계에서 카드뮴 농도가 증가함에 따라 감소 폭이 커졌다. 한편 카드뮴 처리에 의한 생장과 광합성 반응은 박달나무 가계간 뚜렷한 차이를 보여 카드뮴 내성은 가계간 유전적 요인이 작용하고 있음을 확인하였다.