• Title/Summary/Keyword: $O_2$ Sensor

Search Result 1,272, Processing Time 0.031 seconds

MEMS-Based Micro Sensor Detecting the Nitrogen Oxide Gases (산화질소 검출용 마이크로 가스센서 제조공정)

  • Kim, Jung-Sik;Yoon, Jin-Ho;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.299-303
    • /
    • 2013
  • In this study, a micro gas sensor for $NO_x$ was fabricated using a microelectromechanical system (MEMS) technology and sol-gel process. The membrane and micro heater of the sensor platform were fabricated by a standard MEMS and CMOS technology with minor changes. The sensing electrode and micro heater were designed to have a co-planar structure with a Pt thin film layer. The size of the gas sensor device was about $2mm{\times}2mm$. Indium oxide as a sensing material for the $NO_x$ gas was synthesized by a sol-gel process. The particle size of synthesized $In_2O_3$ was identified as about 50 nm by field emission scanning electron microscopy (FE-SEM). The maximum gas sensitivity of indium oxide, as measured in terms of the relative resistance ($R_s=R_{gas}/R_{air}$), occurred at $300^{\circ}C$ with a value of 8.0 at 1 ppm $NO_2$ gas. The response and recovery times were within 60 seconds and 2 min, respectively. The sensing properties of the $NO_2$ gas showed good linear behavior with an increase of gas concentration. This study confirms that a MEMS-based gas sensor is a potential candidate as an automobile gas sensor with many advantages: small dimension, high sensitivity, short response time and low power consumption.

Tunable Electrical Properties of Aligned Single-Walled Carbon Nanotube Network-based Devices: Metallization and Chemical Sensor Applications

  • Kim, Young Lae;Hahm, Myung Gwan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.535-538
    • /
    • 2017
  • Here we report the tunable electrical properties and chemical sensor of single-walled carbon nanotubes (SWCNTs) network-based devices with a functionalization technique. Formation of highly aligned SWCNT structures is made on $SiO_2/Si$ substrates using a template-based fluidic assembly process. We present a Platinum (Pt)-nanocluster decoration technique that reduces the resistivity of SWCNT network-based devices. This indicates the conversion of the semiconducting SWCNTs into metallic ones. In addition, we present the Hydrogen Sulfide ($H_2S$) gas detection by a redox reaction based on SWCNT networks functionalized with 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) as a catalyst. We summarize current changes of devices resulting from the redox reactions in the presence of $H_2S$. The semiconducting (s)-SWCNT device functionalized with TEMPO shows high gas response of 420% at 60% humidity level compared to 140% gas response without TEMPO functionalization, which is about 3 times higher than bare s-SWCNT sensor at the same RH. These results reflect promising perspectives for real-time monitoring of $H_2S$ gases with high gas response and low power consumption.

Solder Paste Inspection of PCB using Laser Sensor (Laser 거리센서를 이용한 PCB에서의 납 도포상태검사)

  • O, Seung-Yong;Choe, Gyeong-Jin;Lee, Yong-Hyeon;Park, Jong-Guk
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.291-294
    • /
    • 2003
  • In this paper, 2D and 3D inspection algorithm for printed solder on PCB is introduced. The aim of inspection is the detection of error such as rich solder poor solder and missing solder. For Inspection, laser distance sensor is used. For 2D inspection, laser image that is created by normalizing laser data between 0 and 255 are used. Reference Image is made using gerber file. Image processing algorithm is used for 2D inspection. By adding thickness of metal stencil to laser image, volume for solder can be calculated and 3D inspection is carried out.

  • PDF

Fabrication and Characteristics of ZnO:In Thin Film $NH_3$ Gas Sensor (ZnO:In 박막 $NH_3$ 가스센서의 제작 및 특성)

  • Kim, Jin-Hae;Jun, Choon-Bae;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.274-282
    • /
    • 1999
  • The In doped ZnO(ZnO:In)thin films sensitive to $NH_3$ gas were prepared by the double layer depositions of In film by vacuum evaporation and ZnO film by rf magnetron sputtering method onto a $SiO_2$/Si wafer substrate, and subsequent heat treatment process. The structural and electrical characteristics of the ZnO:In thin films were studied as a function of heat treatment temperature by x-ray diffraction, scanning electron microscope and 4 point probing method. And the dependence of the sensitivity, the selectivity and the time response of the thin films on heat treatment temperature was investigated. The thin film heat-treated at $400^{\circ}C$ showed the highest sensitivity of 140% at an operating temperature of $300^{\circ}C$. The sensitivity towards CO, $NO_x$, gases observed in the same temperature.

  • PDF

Structural and Electrical Properties of [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 Spinel Thin Films for Infrared Sensor Application (적외선 센서용 [(Co1-xCux)0.2(Ni0.3Mn0.7)0.8]3O4 스피넬 박막의 구조 및 전기적 특성)

  • Lee, Kui Woong;Jeon, Chang Jun;Jeong, Young Hun;Yun, Ji Sun;Cho, Jeong Ho;Paik, Jong Hoo;Yoon, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.825-830
    • /
    • 2014
  • $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ ($0{\leq}x{\leq}1$) thin films prepared by metal organic decomposition process were fabricated on SiN/Si substrate for infrared sensor application. Their structural and electrical properties were investigated with variation of Cu dopant. The $[(Co_{1-x}Cu_x)_{0.2}(Ni_{0.3}Mn_{0.7})_{0.8}]_3O_4$ (CCNMO) film annealed at $500^{\circ}C$ exhibited a dense microstructure and a homogeneous crystal structure with a cubic spinel phase. Their crystallinity was further enhanced with increasing doped Cu amount. The 120 nm-thick CCNMO (x=0.6) thin film had a low resistivity of $53{\Omega}{\cdot}cm$ at room temperature while the Co-free film (x=1) showed a significantly decreased resistivity of $5.9{\Omega}{\cdot}cm$. Furthermore, the negative temperature coefficient of resistance (NTCR) characteristics were lower than $-2%/^{\circ}C$ for all the specimens with $x{\geq}0.6$. These results imply that the CCNMO ($x{\geq}0.6$) thin films are a good candidate material for infrared sensor application.

Enhanced Gas Sensing Properties of Bi2O3-Core/In2O3-Shell Nanorod Gas Sensors

  • Park, Sung-Hoon;An, So-Yeon;Ko, Hyun-Sung;Jin, Chang-Hyun;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3368-3372
    • /
    • 2012
  • The $Bi_2O_3$ nanowires are highly sensitive to low concentrations of $NO_2$ in ambient air and are almost insensitive to most other common gases. However, it still remains a challenge to enhance their sensing performance and detection limit. This study examined the influence of the encapsulation of ${\beta}-Bi_2O_3$ nanorods with $In_2O_3$ on the $NO_2$ gas sensing properties. ${\beta}-Bi_2O_3-core/In_2O_3-shell$ nanorods were fabricated by a two-step process comprising the thermal evaporation of $Bi_2O_3$ powders and sputter-deposition of $In_2O_3$. Multiple networked ${\beta}-Bi_2O_3-core/In_2O_3-shell$ nanorod sensors showed the responses of 12-156% at 1-5 ppm $NO_2$ at $300^{\circ}C$. These response values were 1.3-2.7 times larger than those of bare ${\beta}-Bi_2O_3$ nanorod sensors at 1-5 ppm $NO_2$. The enhancement in the response of ${\beta}-Bi_2O_3$ nanorods to $NO_2$ gas by the encapsulation by $In_2O_3$ can be accounted for based on the space-charge model.

Gas Sensing Characteristics and Doping Effect of $MoO_3$ Thin Films prepared by RF magnetron sputtering (RF magnetron sputtering법으로 제조한 $MoO_3$ 박막의 가스 감지 특성 및 첨가물의 영향)

  • Hwang, Jong-Taek;Jang, Gun-Eik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.460-463
    • /
    • 2002
  • $MoO_3$ thin films were deposited on electrode and heater screen-printed alumina substrates in $O_2$ atmosphere by RF reactive sputtering using Molybdenum metal target. The deposition was performed at $300^{\circ}C$ with 350W of a forward power in an $Ar-O_2$ atmosphere. The working pressure was maintained at $3{\times}10^{-2}mtorr$ and all deposited films were annealed at $500^{\circ}C$ for 5hours. To investigate gas sensing characteristics of the addition doped $MoO_3$ thin film, Co, Ni and Pt were used as adding dopants. The sensing properties were investigated in tenn of gas concentration under exposure of reducing gases such as $H_2$, $NH_3$ and CO at optimum working temperature. Co-doped $MoO_3$ thin film shows the maximum 46.8% of sensitivity in $NH_3$ and Ni-doped $MoO_3$ thin film exhibits 49.7% of sensitivity in $H_2$.

  • PDF

Gas Sensing Characteristics of SnO2 Coated with Catalyst for Hydrocarbon Gas (촉매가 첨가된 SnO2 가스센서의 탄화수소 가스에 대한 감응 특성)

  • Lee, Ji-Young;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.358-361
    • /
    • 2012
  • Co and Ni as catalysts in $SnO_2$ sensors to improve the sensitivity for $CH_4$ gas and $CH_3CH_2CH_3$ gas were coated by a solution reduction method. $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates with an electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a chamber. The structural properties of $SnO_2$ with a rutile structure investigated by XRD showed a (110) dominant $SnO_2$ peak. The particle size of the $SnO_2$:Ni powders with Ni at 6 wt% was about 0.1 ${\mu}m$. The $SnO_2$ particles were found to contain many pores according to a SEM analysis. The sensitivity of $SnO_2$-based sensors was measured for 5 ppm of $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air to that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors coated with 6 wt% Ni. The $SnO_2$:Ni gas sensors showed good selectivity to $CH_4$ gas. The response time and recovery time of the $SnO_2$:Ni gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 20 seconds and 9 seconds, respectively.

Thermal Characteristics of Microheater for Gas Sensors (가스센서용 마이크로 히터의 발열특성)

  • Choi, Woo-Chang;Choi, Hyek-Hwan;Kwon, Tae-Ha;Lee, Myong-Kyo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.356-363
    • /
    • 1998
  • Using the results analyzed by FEM(Finite Element Method). the microheaters with the stress-balanced $Si_3N_4$(150 nm)/$SiO_2$(300 nm)/$Si_3N_4$(150 nm) diaphragms were fabricated by silicon micromachining techniques. Pt was used as microheater materials. Pt temperature sensor was fabricated to measure the temperature of microheaters. Resistance of temperature sensor and power dissipation of microheater were measured and calculated at the various temperatures. The thermal distribution of heater was examined by a IR thermoviewer. Measured and simulated results are compared and analyzed. The temperature coefficient of resistance of heater was about $0.00379/^{\circ}C$. Pt heater showed the power dissipation of about 51 mW at $300^{\circ}C$ and a uniform thermal distribution on the surface.

  • PDF

Enhancing Performance of 1-aminopyrene Light-Emitting Diodes via Hybridization with ZnO Quantum Dots

  • Choi, Jong Hyun;Kim, Hong Hee;Choi, Won Kook
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.238-243
    • /
    • 2022
  • In this study, a pyrene-core single molecule with amino (-NH2) functional group material was hybridized using ZnO quantum dots (QDs). The suppressed performance of the 1-aminopyrene (1-PyNH2) single molecule as an emissive layer (EML) in light-emitting diodes (LEDs) was exploited by adopting the ZnO@1-PyNH2 core-shell structure. Unlike pristine 1-PyNH2 molecules, the ZnO@1-PyNH2 hybrid QDs formed energy proximity levels that enabled charge transfer. This result can be interpreted as an improvement in surface roughness. The uniform and homogeneous EML alleviates dark-spot degradation. Moreover, LEDs with the ITO/PEDOT:PSS/TFB/EML/TPBi/LiF/Al configuration were fabricated to evaluate the performance of two emissive materials, where pristine-1-PyNH2 molecules and ZnO@1-PyNH2 QDs were used as the EML materials to verify the improvement in electrical characteristics. The ZnO@1-PyNH2 LEDs exhibited blue luminescence at 443 nm (FWHM = 49 nm), with a turn-on voltage of 4 V, maximum luminance of 1500 cd/m2, maximum luminous efficiency of 0.66 cd/A, and power efficiency of 0.41 lm/W.