• Title/Summary/Keyword: $O_2$ Sensor

Search Result 1,272, Processing Time 0.033 seconds

Low-Temperature Operating $SnO_2$ Nanowire $NO_2$ Sensor

  • Jung, Tae-Hwan;Kwon, Soon-Il;Kim, Yeon-Woo;Park, Jae-Hwan;Lim, Dong-Gun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.485-486
    • /
    • 2008
  • The network structure of $SnO_2$ nanowires was fabricated on the electrodes by a simple thermal evaporation process from Sn metal powders and oxygen gas. The diameter of the nanowires was $20\;{\sim}\;60\;nm$ depending on the processing conditions. The operating temperature of the sensor could be decreased down below $50^{\circ}C$ by controlling the properties of the nanowires and the structures of the electrodes. The sensitivities were $10\;{\sim}\;15$ when the $NO_2$ concentrations were $10\;{\sim}\;50\;ppm$ at the operating temperature of $50^{\circ}C$.

  • PDF

Effects of Substrate on the Characteristics of SnO2 Thin Film Gas Sensors (기판 종류에 따른 박막형 SnO2 가스 센서의 응답특성)

  • Kim, Seon-Hoon;Park, Shin-Chul;Kim, Jin-Hyuk;Moon, Jong-Ha;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.111-114
    • /
    • 2003
  • Effects of substrate materials on the microstructure and the sensitivity of $SnO_2$thin film gas sensors have been studied. Various substrates were studied, such as oxidized silicon, sapphire, polished alumina, and unpolished alumina. It was observed that strong correlation exists between the electrical resistance and the CO gas sensitivity of the manufactured sensors and the surface roughness of $SnO_2$thin films, which in turn was related to the surface roughness of the original substrates. X$SnO_2$thin film gas sensor on unpolished alumina with the highest surface roughness showed the highest initial resistance and CO gas sensitivity. The transmission electron microscopy observation indicated that shape and size of the columnar microstructure of the thin films were not critically affected by the type of substrates.

Characterization of O2 ionosorption induced potential changing property of SnO2 nanowire with Kelvin force microscopy (KFM)

  • Heo, Jinhee;Won, Soonho
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.359-362
    • /
    • 2012
  • We have employed Kelvin force microscopy (KFM) system to measure the potential change of a single SnO2 nanowire which had been synthesized on the Au thin film by a thermal process. By using the KFM probing technique, Rh coated conducting cantilever can approach a single SnO2 nanowire in nano scale and get the potential images with oscillating AC bias between Au electrode and cantilever. Also, during imaging the potential status, we controlled the concentration of oxygen in measuring chamber to change the ionosorption rate. From the results of such experiments, we verified that the surface potential as well as doping type of a single SnO2 nanowire could be changed by oxygen ionosorption.

Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles (탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성)

  • Kim, Hyung-Kun;Lee, Rhim-Youl
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

Effect of SiO2 and Nb2O5 Buffer Layer on Optical Characteristics of ITO Thin Film

  • Kwon, Yong-Han;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.29-33
    • /
    • 2015
  • This paper presents the results of the optical characteristics of ITO thin film with different buffer layer thicknesses of $SiO_2$ and $Nb_2O_5$ for touch sensor application. $SiO_2$ and $Nb_2O_5$ buffer layers were deposited using RF magnetron sputtering equipment. The buffer layers were inserted between glass and ITO layers. In order to compare with the experimental results, the Essential Macleod Program (EMP) was adopted. Based on EMP simulation, the [$Nb_2O_5{\mid}SiO_2{\mid}ITO$] multi-layered thin film exhibited high transmittance of more than 85% in the visible region. The actual experimental results also showed transmittance of more than 85% in the visible region, indicating that the simulated results were well matched with the experimental results. The sheet resistance of ITO based film was about $340{\Omega}/sq$. The surface roughness maintained a relatively small value within the range of 0.1~0.4 nm when using the $Nb_2O_5$ and $SiO_2$ buffer layers.

Gas Sensing Characteristics of $SnO_{2}$ added with $TiO_{2},\;Pd,\;Pt$ and in for Trimethylamine Gas (Trimethylamine Gas 측정을 위한 $TiO_{2},\;Pd,\;Pt$ 및 In이 첨가된 $SnO_{2}$가스 센서의 특성)

  • Lee, Chang-Seop;Jung, Soon-Boon;Jun, Jae-Mok;Lee, In-Sun;Lee, Hyeong-Rag;Park, Young-Ho;Choi, Sung-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.29-33
    • /
    • 2007
  • This study investigates the use of $TiO_{2},\;Pd,\;Pt$, and In which greatly improves a sensitivity to trimethylamine gas. The metal-$SnO_{2}$ thick films were prepared by screen-printing method onto $Al_{2}O_{3}$ substrates with platinum electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of detecting gas concentration. This was then used to detect trimethylamine, dimethylamine, and ammonia vapours within the concentration range of 100-1000ppm. The gas sensing properties of metal-$SnO_{2}$ mixed thick films depended on the content and variety of metal. It was found that sensitivity and selectivity of the films dopped with 1 wt% Pd and 10 wt% $TiO_{2}$ for trimethylamin gas showed the best result at $250^{\circ}C$.

  • PDF

Piezoelectric Properties of Pb-free Bi(Na,K)$TiO_3-SrTiO_3$ Ceramics with the Amount of $CeO_2$ Addition ($CeO_2$첨가에 따른 무연 Bi(Na,K)$TiO_3-SrTiO_3$ 세라믹스의 압전특성)

  • Lee, Hyun-Seok;Yoo, Ju-Hyun;Park, Chang-Yub;Jeong, Yeong-Ho;Hong, Jae-Il;Im, In-Ho;Yoon, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.590-594
    • /
    • 2004
  • In this study, lead-free piezoelectric ceramics were investigated for pressure sensor applications as a function of the amount of $CeO_2$ addition at Bi(Na,K)$TiO_3-SrTiO_3$ system. With increasing the amount of $CeO_2$ addition, the density and dielectric constant increased. Electromechanical coupling factor($k_p$) showed the maximum value(kp, 0.39) at 0.1wt% $CeO_2$ addition and decreased above 0.1wt% $CeO_2$ addition., Density, dielectric constant(${\varepsilon}_r$) increased but mechanical quality factor(Qm), piezoelectric constant(d33) decreased in $CeO_2$ addition, respectively.

  • PDF

Dry Etching Properties of HfAlO3 Thin Film with Addition O2 gas Using a High Density Plasma

  • Woo, Jong-Chang;Lee, Yong-Bong;Kim, Jeong-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.164-169
    • /
    • 2014
  • We investigated the etching characteristics of $HfAlO_3$ thin films in $O_2/Cl_2/Ar$ and $O_2/BCl_3/Ar$ gas, using a high-density plasma (HDP) system. The etch rates of the $HfAlO_3$ thin film obtained were 30.1 nm/min and 36 nm/min in the $O_2/Cl_2/Ar$ (3:4:16 sccm) and $O_2/BCl_3/Ar$ (3:4:16 sccm) gas mixtures, respectively. At the same time, the etch rate was measured as a function of the etching parameter, namely as the process pressure. The chemical states on the surface of the etched $HfAlO_3$ thin films were investigated by X-ray photoelectron spectroscopy. Auger electron spectroscopy was used for elemental analysis on the surface of the etched $HfAlO_3$ thin films. These surface analyses confirm that the surface of the etched $HfAlO_3$ thin film is formed with nonvolatile by-product. Also, Cl-O can protect the sidewall due to additional $O_2$.

The Hydrogen Gas Sensing Characteristics of the Pd-doped $SnO_2$ Thin Films Prepared by Sputtering (스퍼터링법으로 제조된 Pd-doped $SnO_2$ 박막의 수소가스 감도 특성)

  • 차경현;김영우;박희찬;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.701-708
    • /
    • 1993
  • Pd-doped SnO2 thin films for hydrogen gas sensing were fabricated by reactive fo magnetron sputtering and were studied on effects of film thickness and Pd doping content. Pd doping caused the optimum sensor operation temperature to reduce down to ~25$0^{\circ}C$ and also enhanced gas sensitivity, compared with undoped SnO2 film. Gas sensitivity depended on the film thickness. The sensitivity increased with decreasing the film thickness, showing maximum sensitivities at the thickness of 730$\AA$ and 300~400$\AA$ for the undoped SnO2 and the Pd-doped SnO2 film, respectively. Further decrease of the film thickness beyond these thickness ranges, however, resulted in the reduction of sensitivity again.

  • PDF

A Study on the Development of $TiO_2-V_2O_5$ Thin Film Type Humidity Sensors ($TiO_2-V_2O_5$ 박막형 습도센서의 개발에 관한 연구)

  • You, D.H.;Jin, Y.Y.;Park, C.B.;Kim, Y.B.;Cho, S.Y.;Lee, D.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.05a
    • /
    • pp.142-145
    • /
    • 1993
  • $TiO_2-V_2O_5$ thin films are fabricated by Sol-Gel method and humidity sensing properties have been investigated. As the results of humidity sensing properties of thin films fabricated as humidity sensor, it is confirmed to have good humidity sensing properties in high humidity and low frequency regions.

  • PDF