• Title/Summary/Keyword: $O_2$ Consumption

Search Result 702, Processing Time 0.031 seconds

Design of a new barrier rib with low dielectric constant and thermal stability

  • Lee, Chung-Yong;Hwang, Seong-Jin;You, Young-Jin;Lee, Sang-Ho;Kim, Hyung-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.725-727
    • /
    • 2009
  • Lowering the dielectric constant is one of the important issues for the efficiency and the power consumption in the plasma display panel (PDP) industry. This study examined the effect of the addition of ceramic filler (up to 10% of crystalline and amorphous silica, respectively) to a $B_2O_3$-ZnO- $P_2O_5$ glass matrix on the dielectric, coefficient of thermal expansion, etching behaviors and residual stress for the barrier ribs in plasma display panels. The dielectric constant of barrier ribs is affected by containing two types of $SiO_2$ filler for the barrier rib composition in PDP.

  • PDF

Analysis of respiration gas of a fertile chicken egg during incubation by gas mass spectrometer (기체질량분석기를 이용한 유정란 부화과정의 호흡량 분석)

  • Kim, Hyunjoo;Min, Deullae;Kim, Dalho;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.401-406
    • /
    • 2013
  • Oxygen($O_2$) consumption and carbon dioxide($CO_2$) excretion of a fertile chicken egg during incubation were measured by a gas mass spectrometer. A closed sample chamber was developed to collect gas samples during the 20 days of artificial incubation of both a fertile and an infertile egg. After leaving an egg in the sample chamber for an hour, using a gas-tight syringe, samples of 2 mL of gas were collected from the closed sample chamber and analyzed using a gas mass spectrometer in 2~4 day intervals. The $O_2$ consumption and $CO_2$ excretion of chicken embryos increased rapidly after 10 days from the starting point of incubation. After 20 days, 23 mL of $O_2$ was consumed and 16 mL of $CO_2$ was excreted per hour. Throughout the whole period of incubation, concentration of $O_2$ decreased 4.3 mol% and $CO_2$ increased only 3.1 mole%, i.e., the mole of consumed $O_2$ and the mole of excreted $CO_2$ were not the same. On the other hand, during the same period, concentration of $N_2$ increased about 1.3 mol% and the increased mole fraction of $N_2$ was comparable with the difference (1.2 mol%) between the mole fraction of consumed $O_2$ and excreted $CO_2$. Therefore, we can attribute the increase of $N_2$ mole% to the difference of mole fraction between consumed $O_2$ and excreted $CO_2$. In this study, through the analysis of gas, we could explain the respiration of a fertile chicken egg during incubation.

A Study of GHG-AP Integrated Inventories and Alternative Energy Use Scenario of Energy Consumption in the University (대학 내 에너지 소비에 따른 온실가스-대기오염 통합 인벤토리 및 대체 에너지 사용 시나리오 분석)

  • Jung, Jae-Hyung;Kwon, O-Yul
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1643-1654
    • /
    • 2014
  • The university is one of the main energy consumption facilities and thereby releases a large amount of greenhouse gas (GHG). Accordingly, efforts for reducing energy consumption and GHG have been established in many local as well as international universities. However, it has been limited to energy consumption and GHG, and has not included air pollution (AP). Therefore, we estimated GHG and AP integrated emissions from the energy consumed by Seoul National University of Science and Technology during the years between 2010 and 2012. In addition, the effect of alternative energy use scenario was analysed. We estimated GHG using IPCC guideline and Guidelines for Local Government Greenhouse Inventories, and AP using APEMEP/EEA Emission Inventory Guidebook 2013 and Air Pollutants Calculation Manual. The estimated annual average GHG emission was $11,420tonCO_{2eq}$, of which 27% was direct emissions from fuel combustion sectors, including stationary and mobile source, and the remaining 73% was indirect emissions from purchased electricity and purchased water supply. The estimated annual average AP emission was 7,757 kgAP, of which the total amount was from direct emissions only. The annual GHG emissions from city gas and purchased electricity usage per unit area ($m^2$) of the university buildings were estimated as $15.4kgCO_{2eq}/m^2$ and $42.4tonCO_{2eq}/m^2$ and those per person enrolled in the university were $210kgCO_{2eq}$/capita and $577kgCO_{2eq}$/capita. Alternative energy use scenarios revealed that the use of all alternative energy sources including solar energy, electric car and rain water reuse applicable to the university could reduce as much as 9.4% of the annual GHG and 34% of AP integrated emissions, saving approximately 400 million won per year, corresponding to 14% of the university energy budget.

Electrochemical Degradation of Textile Effluent Using PbO2 Electrode in Tube Electrolyzer

  • Chao Wang; Yongqiang Li;Junmin Wan;Yi Hu;Yi Huang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.190-197
    • /
    • 2024
  • A commercial PbO2 mesh cylinder electrode was utilized as the anode for the electrochemical degradation of the textile effluent after the biological treatment with the titanium cylinder as the cathode in a self-made tube electrolyzer. The electrochemical performances of the PbO2 electrode in tube electrolyzer under different initial pH, electrolyte flow rates, current densities and times of the electrochemical degradation were investigated. The experimental results illustrated that the PbO2 electrode can reduce the chemical oxygen demand (COD) of the textile effluent from 94.0 mg L-1 to 65.0 mg L-1 with the current efficiency of 88.3%, the energy consumption of 27.7 kWh kg-1 (per kilogram of degraded COD) and the carbon emissions of 18.0 kg CO2 kg-1 (per kilogram of degraded COD) under the optimal operating conditions. In addition, the COD of the textile effluent could be reduced from 94.0 mg L-1 to 22.0 mg L-1 after the fifth electrochemical degradation. Therefore, PbO2 mesh cylinder electrode in the tube cylinder was promising for the electrochemical degradation of the textile effluent.

Effect of Al2O3 Addition on SF6 Decomposition by Microwave Irradiation (마이크로파 조사에 의한 SF6 분해시 Al2O3 첨가의 영향)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.1
    • /
    • pp.83-89
    • /
    • 2013
  • Silicon carbide with aluminium oxide was used to remove the sulphur hexafluoride ($SF_6$) gas using microwave irradiation. The destruction and removal efficiencies (DREs) of $SF_6$ were studies as a function of various decomposition temperatures and microwave powers. The decomposition of $SF_6$ gas was analyzed using GC-TCD. XRD (X-ray powder diffraction) and XRF (X-ray Fluorescence Spectrometer) were used to characterize the properties of aluminum oxide. DREs of $SF_6$ were increased as the microwave powers were increased. Additive aluminium oxide on SiC increased the removal efficiencies and decreased the decomposition temperature. The XRD results show that the ${\gamma}-Al_2O_3$ was transformed to ${\alpha}-Al_2O_3$ during $SF_6$ decomposition by microwave irradiation. It was found that the best material to control $SF_6$ was SiC with $Al_2O_3$ 30 wt% in consideration of microwave energy consumption and $SF_6$ decomposition rate.

The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer (광산란층을 이용한 염료감응형 태양전지의 특성)

  • Eom, Tae-Sung;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.558-562
    • /
    • 2012
  • As an alternative energy, Dye-sensitized solar cells (DSSCs) have received much attention due to low cost manufacturing procedure and high energy consumption rate. Incorporating scattering centers in the nanocrystalline photoanode or additional scattering layers on the nanocrystalline photoanode is an effective way to enhance the light harvest efficiency of the photoanode and the performance of dye-sensitized solar cells (DSSCs). The light scattering abilities of these scattering layers also depend on the relative sizes and phase of the particles in the layers. A higher surface area is normally obtained using large particle sizes. Therefore, transparent high surface area $TiO_2$ layers and an additional scattering layer consisting of $TiO_2$-Rutile 500 nm paste with relatively larger particles are attractive. In this work, we investigates the applicability of a hybrid $TiO_2$ electrode (or a working electrode with a light scattering layer) in a DSSCs. We fabrication various thin film using $TiO_2$ paste 20 nm and $TiO_2$ paste 500 nm. As a result, the efficiency of the a single structure thin film was 3.35% and the efficiency as scattering layer of hybrid structure thin film was 4.36%, 4.73%.

Distribution of Various Nitrogenous Compounds and Respiratory Oxygen Consumption Rate in Masan Bay, Korea During Summer 1986 (1986년 하계 마산만의 각종 질소화합물분포와 산소소비율에 대한 연구)

  • YANG, DONG-BEOM
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.303-310
    • /
    • 1992
  • Studies on the distribution of nitrogenous compounds, and respiratory oxygen consumption rate were carried out in Masan Bay, Korea where large amount of industrial and domestic wastewaters are discharged. In August 1986 the surface layer was significantly influenced by freshwater input. Below the seasonal pycnocline, an oxygen-deficient condition developed in a large area of Masan Bay. Concentrations of DIN, DON and PN were 735.6, 1261.8 and 48.5 umol/l at the head, and 79.1, 73.0 and 39.5 umol/l at the mouth of the inner Masan Bay, respectively. Phytoplankton carbon production was 2,695 mgC/m$^2$/day at the mouth of inner Masan Bay. Dissolved oxygen contents were lower than 1 ml/l from 3 m depth in inner Masan Bay and from 10 m depth in the outer Masan Bay. The high concentration of ammonium and phosphate in the lower layer suggests the active degradation of organic materials in the bottom waters and leaching from sediments. The ERS activity was 232.1 ul O$_2$/l/h in the surface waters of the innermost part of Masan Bay and respiratory oxygen consumption is likely to proceed at a rate of 442 ml O$_2$/m$^2$/day in the bottom waters of this bay. Nitrate removal rate was estimated to be 0.25 umol/l/day via denitrification in the bottom waters of the Masan Waterway. It is estimated from the ETS activity that, at the mouth of inner Masan Bay, 9.3-10.5% of carbon fixed in the upper layer was decomposed below the themocline.

  • PDF

Assessment of gas production and electrochemical factors for fracturing flow-back fluid treatment in Guangyuan oilfield

  • Liu, Yang;Chen, Wu;Zhang, Shanhui;Shi, Dongpo;Zhu, Mijia
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.521-528
    • /
    • 2019
  • Electrochemical method was used for the fracturing flow-back fluid treatment in Guangyuan oilfield. After performing electrolysis, we found that the amount of $H_2$ gas produced by electrode was closely related to the combination mode of electrodes and electrode materials. Using an aluminium electrode resulted in a large $H_2$ production of each electrode combination, whereas inert anode and cathode materials resulted in low $H_2$ production. Then, the relationship between the gas production of $H_2$ and the treatment efficiency of fracturing flow-back fluid in Guangyuan oilfield was studied. Results showed that the turbidity removal and decolourisation rates of fracturing flow-back fluid were high when $H_2$ production was high. If the $H_2$ production of inert electrode was large, the energy consumption of this inert electrode was also high. However, energy consumption when an aluminium anode material was used was lower than that when the inert electrode was used, whereas the corresponding electrode combination production of $H_2$ was larger than that of the inert electrode combination. When the inert electrode was used as anode, the gas production type was mainly $O_2$, and $Cl_2$ was also produced and dissolved in water to form $ClO^-$. $H_2$ production at the cathode was reduced because $ClO^-$ obtained electrons.

Oxidation of Hot Pressed Cr2AlC Compounds at 900-1200℃ for Up to 50 Hours in Air (열간 압축법으로 제조된 Cr2AlC 화합물의 900-1200℃, 50시간 동안의 대기중 산화)

  • Lee, Dong-Bok
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • $Cr_2AlC$ compounds were synthesized by hot pressing, and oxidized between 900 and $1200^{\circ}C$ in air for up to 50 hours. They oxidized to a thin $Al_2O_3$ layer containing a small amount of $Cr_2O_3$with the liberation of carbon as CO or $CO_2$ gases. The consumption of Al to form the $Al_2O_3$ layer led to the depletion of Al and enrichment of Cr just below the $Al_2O_3$ layer, resulting in the formation of an underlying $Cr_7C_3$ layer. As the oxidation temperature and time increased, the $Cr_7C_3$ oxide layer and the underlying $Cr_7C_3$ layer thickened. The oxidation resistance of $Cr_2AlC$ was generally good due to the formation of the $Al_2O_3$ barrier layer.

Effect of Limestone Powder on Hydration of $C_{3}A-CaSO_{4}$ $\cdot$ $2H_{2}O$ system ($C_3A-CaSO_4\cdot2H_2O$ 계의 수화반응에 미치는 석회석미분말의 영향)

  • Lee Jong-Kyu;Chu Yong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.349-352
    • /
    • 2005
  • In this work, effects of limestone powder on hydration of $C_3A-CaSO_4\cdot2H_2O$ system was discussed based on the XRD Quantitative analysis, and the possibility of Delayed Ettringite Formation was also discussed. The early hydration of $C_{3}A$ was delayed by addition of $CaCO_{3}$ powder. The delay effect was enhanced by increasing of $CaCO_{3}$ content and finer powder of $CaCO_{3}$ addition. After consumption of $CaSO_4\cdot2H_2O$, the reaction of $CaCO_{3}$ is started. Delayed Ettringite Formation would take place because monosulfoaluminate is not stable in presence of $CaCO_{3}$. In order to prevent the delayed ettringite formation in $C_3A-CaSO_4\cdot2H_2O-CaCo_3$ system, the reduction of monosulfoaluminate formation is important. Therefore, by increasing the amount of $CaCO_{3}$ addition and finer $CaCO_{3}$ powder addition, the delayed ettringite formation can be prevented.

  • PDF