• 제목/요약/키워드: $OH^-$

검색결과 66,821건 처리시간 0.084초

곤약의 최적 응고 및 항미생물 활성을 위한 조건 확립 (Establishment of Optimum Condition for the Coagulation and Antimicrobial Activity of Konjac Jelly)

  • 심재인;최선정;정재현;최웅규
    • 한국식생활문화학회지
    • /
    • 제29권5호
    • /
    • pp.415-420
    • /
    • 2014
  • This study was conducted to establish optimum conditions for coagulation of konjac jelly as well as antimicrobial activity by concentration of $Ca(OH)_2$. Hardness, gumminess, and chewiness of konjac jelly increased according to concentration of konjac powder, the key material of konjac jelly. The highest sensory evaluation score was acquired with konjac jelly made with 3% konjac powder. A $Ca(OH)_2$ concentration of 0.4-0.6% as a coagulation agent was optimum for coagulation of konjac jelly. Further, sensory score was highest at a $Ca(OH)_2$ concentration of 0.6%. All populations of bacteria, yeast, and mold in konjac jelly were restrained by $Ca(OH)_2$ in a concentration- dependent manner. Furthermore, all tested microorganisms were strictly restrained at $1.0{\times}10^{-2}$ N of $Ca(OH)_2$.

Borate 완충용액에서 구리의 부식과 부동화에 미치는 대류 영향 (Hydrodynamic Effects on Corrosion and Passivation of Copper in Borate Buffer Solution)

  • 천정균;김연규
    • 전기화학회지
    • /
    • 제10권1호
    • /
    • pp.14-19
    • /
    • 2007
  • Cu-RDE를 이용하여 borate 완충용액에서 Cu의 부식과 부동화 과정의 반응구조를 연구하였다. 혼합 전위(mixed potential) 이론을 도입하여 대류확산의 조건(convective diffusion)에서 회전속도의 증가에 따라 부식전위가 양의 방향으로 증가하는 모형을 발견하였다. 산화에 의한 생성물은 중간물질 $Cu(OH)_{ads}$를 거쳐, 부식, 부동화의 시작, 중간, 마지막 등의 영역에서 각각 ${Cu(OH)_2}^-,\;Cu_2O,\;Cu(OH)_2,\;CuO$인 것으로 제안하였다.

실리콘 웨이퍼 세정을 위한 오존의 거동에 관한 연구 (Solubility Behavior of Ozone for Silicon Wafer Cleaning)

  • 이건호;김인정;배소익
    • 반도체디스플레이기술학회지
    • /
    • 제4권4호
    • /
    • pp.13-17
    • /
    • 2005
  • The behavior of ozone in $NH_4OH$ was investigated to evaluate the solution as a cleaning chemical of the silicon wafer. The solubility of ozone in DI(Deionized) water increased as the oxygen flow-rate decreased and ozone generator power increased. Ozone in DI water showed solubility of 100 ppm or higher at room temperature. Ozone concentration was stabilized at the range of ${\pm}2ppm$ by controlling oxygen flow rate and ozone generator power. On the contrary, the solubility of ozone in $NH_4OH$ was very low and strongly depended on the concentration of $NH_4OH$ and pH. The redox potential of ozone was saturated within 10 minutes in DI water and decreased rapidly with the addition of $NH_4OH$. The behavior of ozone in $NH_4OH$ is well explained by redox potential calculation.

  • PDF

Proton Transfer Reactions and Ion-Molecule Reactions of Ionized XCH2CH2Y (X and Y = OH or NH2)

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.539-544
    • /
    • 2006
  • Proton transfer reactions and ion-molecule reactions of bifunctional ethanes of $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$ were studied using Fourier transform mass spectrometry (FTMS). The rate constants for proton transfer reactions between the fragment ions and neutral molecules were obtained from the temporal variation of the ion abundances. The rate constants were consistent with the heats of reaction. The fastest proton transfer reactions were the reactions of $CH_2N^+$, $CHO^+$, and $CH_3O^+$ for $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$, respectively. The $[M+13]^+$ ion was formed by the ion-molecule reaction between $H_2C=NH_2 ^+$ or $H_2C=OH^+$ and the neutral molecule. The major product ions generated from the ion-molecule reactions between the protonated molecule and neutral molecule were $[2M+H]^+$, $[M+27]^+$, and $[M+15]^+$.

Photodissocaition Dynamics of Propiolic Acid at 212 nm: The OH Production Channel

  • Shin, Myeong Suk;Lee, Ji Hye;Hwang, Hyonseok;Kwon, Chan Ho;Kim, Hong Lae
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3618-3624
    • /
    • 2012
  • Photodissociation dynamics of propiolic acid ($HC{\equiv}C-COOH$) at 212 nm in the gas phase was investigated by measuring rotationally resolved laser-induced fluorescence spectra of OH ($^2{\Pi}$) radicals exclusively produced in the ground electronic state. From the spectra, internal energies of OH and total translational energy of products were determined. The electronic transition at 212 nm responsible for OH dissociation was assigned as the ${\pi}_{C{\equiv}C}{\rightarrow}{\pi}^*{_{C=O}}$ transition by time-dependent density functional theory calculations. Potential energy surfaces of both the ground and electronically excited states were obtained employing quantum chemical calculations. It was suggested that the dissociation of OH from propiolic acid excited at 212 nm should take place along the $S_1/T_1$ potential energy surfaces after internal conversion and/or intersystem crossing from the initially populated $S_2$ state based upon the potential energy calculations and model calculations for energy partitioning of the available energy among products.

전기화학적 방법에 의한 타이타늄 분극특성 및 나노메쉬 형성 (Characteristics of titanium polarization curve and formation of nanomesh by electrochemical method)

  • 박진서;김부섭
    • 대한치과기공학회지
    • /
    • 제38권2호
    • /
    • pp.79-84
    • /
    • 2016
  • Purpose: The aim of this study was to make nanomesh on the surface of titanium by potentiostatic technique which was done at the suitable potential level. Methods: In order to find the suitable potential level, use a $25^{\circ}C$ NaCl, NaOH and NH4F solution of 1 M and 5 M as supporting electrolyte, working electrode(positive potential) was contact to the titanium specimen and counter electrode(negative potential) was contact to the Pt substrate. At the transpassive potential which was observed by potentiostatic technique, potentiostatic technique was done for 2hours. Results: As a result, 1 M NaOH solution was suitable as a supporting electrolyte, potentiostatic technique used a $25^{\circ}C$ NaOH solution of 1 M for 2hours, nanomesh was formed. Conclusion: The potentiostatic technique was used $25^{\circ}C$ NaOH solution of 1 M and 5 M as supporting electrolyte for 2hours. Nanomesh was built more uniform and fine in 1 M NaOH solution than 5 M NaOH solution.

균일침전에 의한 AlO(OH) 나노 겔 합성에서 물/황산알루미늄의 몰 비가 세공특성에 미치는 영향 (Effect of Water and Aluminum Sulfate Mole Ratio on Pore Characteristics in Synthesis of AlO(OH) Nano Gel by Homogeneous Precipitation)

  • 최동욱;박병기;이정민
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.564-568
    • /
    • 2006
  • AlO(OH) nano gel is used in precursor of ceramic material, coating material and catalyst. For use of these, not only physiochemical control for particle morphology, pore characteristic and peptization but also studies of synthetic method for preparation of advanced application products were required. In this study, AlO(OH) nano gel was prepared through the aging and drying process of aluminum hydroxides gel precipitated by the hydrolysis reaction of dilute NaOH solution and aluminum sulfate solution. In this process, optimum synthetic condition of AlO(OH) nano gel having excellent pore volume as studying the effect of water and aluminum sulfate mole ratio on gel precipitates has been studied. Water and aluminum sulfate mole ratio brought about numerous changes on crystal morphology, surface area, pore volume and pore size. Physiochemical properties were investigated as using XRD, TEM, TG/DTA, FT-IR, and $N_2$ BET method.

Formation of Hydroxyl Radical from the Hydrogen Chemisorbed Silicon Surface by Incident Oxygen Atoms

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권7호
    • /
    • pp.986-992
    • /
    • 2003
  • We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH, particularly in its vibrational motion, in the gas-surface reaction O(g) + H(ad)/Si → OH(g) + Si on the basis of the collision-induced Eley-Rideal mechanism. The reaction probability of the OH formation increases linearly with initial excitation of the HSi vibration. The translational and vibrational motions share most of the energy when the H-Si vibration is initially in the ground state. But, when the initial excitation increases, the vibrational energy of OH rises accordingly, while the energies shared by other motions vary only slightly. The product vibrational excitation is significant and the population distribution is inverted. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations. The amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

NaOH 활성화법으로 제조한 폐감귤박 활성탄의 흡착특성 (Adsorption Characteristics of Activated Carbon Prepared From Waste Citrus Peels by NaOH Activation)

  • 강경호;감상규;이송우;이민규
    • 한국환경과학회지
    • /
    • 제16권11호
    • /
    • pp.1279-1285
    • /
    • 2007
  • The activated carbon was prepared from waste citrus peels using NaOH. With the increase of NaOH ratio, iodine adsorptivity and specific surface area of the activated carbon prepared were increased, but activation yield was decreased. The optimal condition of activation was at 300% NaOH and $700^{\circ}C$ for 1.5 hr. For the activated carbon produced under optimal condition, iodine adsorptivity was 1,006 mg/g, specific surface area was $1,356 m^2/g$, and average pore diameter was $20{\sim}25{\AA}$. From the adsorption experiment for benzene vapor in fixed bed reactor, it was found that the adsorption capacity of activated carbon prepared from waste citrus peel was higher than that of activated carbon purchased from Calgon company. This result implied that the activated carbon prepared from waste citrus peel could be used for gas phase adsorption.

Biofactory로서의 미나리 엽조직을 이용한 재조합단백질 발현 (Expression of recombinant protein from Oenanthe javanica DC. leaf tissues as a biofactory)

  • 신동일;박희성
    • KSBB Journal
    • /
    • 제23권6호
    • /
    • pp.554-556
    • /
    • 2008
  • 미나리의 엽조직을 agroinfiltration 및 동시배양을 수행하기 전에 NaOH 용액에서 3 min 처리를 실시하였다. MTT를 이용한 세포사멸실험에서 0.7% NaOH 용액처리까지는 엽조직 세포활성에 안전한 것으로 판단되었다. GUS 효소활성의 형광분석 결과 0.5% NaOH를 처리한 미나리 엽조직에 대하여 Agrobacterium cells ($OD_{600}=0.5$에서 1.0)을 이용한 vacuum infiltration (20 min)을 실시할 경우 효율적 형질전환이 이루어짐을 알 수 있었다. 이러한 조건은 western blotting과 ELISA에 의한 HBsAg의 발현 검정에서 확인할 수 있었다.