DOI QR코드

DOI QR Code

Hydrodynamic Effects on Corrosion and Passivation of Copper in Borate Buffer Solution

Borate 완충용액에서 구리의 부식과 부동화에 미치는 대류 영향

  • Chon, Jung-Kyoon (Department of Chemistry College of Natural Science, Hankuk University of Foreign Studies) ;
  • Kim, Youn-Kyoo (Department of Chemistry College of Natural Science, Hankuk University of Foreign Studies)
  • 천정균 (한국외국어대학교 자연과학대학 화학과) ;
  • 김연규 (한국외국어대학교 자연과학대학 화학과)
  • Published : 2007.02.28

Abstract

The corrosion and passivation of copper was investigated with the copper rotating disk electrode(Cu-RDE) in borate buffer solution. It has been observed with the mixed potential theory that the corrosion potential for the rotation rate increase under the convective diffusion condition was increased. It was suggested that the chemical intermediates and product 13. the copper oxidation were $Cu(OH)_{ads},\;{Cu(OH)_2}^-,\;Cu_2O,\;Cu(OH)_2,\;and\;CuO$.

Cu-RDE를 이용하여 borate 완충용액에서 Cu의 부식과 부동화 과정의 반응구조를 연구하였다. 혼합 전위(mixed potential) 이론을 도입하여 대류확산의 조건(convective diffusion)에서 회전속도의 증가에 따라 부식전위가 양의 방향으로 증가하는 모형을 발견하였다. 산화에 의한 생성물은 중간물질 $Cu(OH)_{ads}$를 거쳐, 부식, 부동화의 시작, 중간, 마지막 등의 영역에서 각각 ${Cu(OH)_2}^-,\;Cu_2O,\;Cu(OH)_2,\;CuO$인 것으로 제안하였다.

Keywords

References

  1. G. Moretti and F. Guidi, 'Tryptopan as copper corrosion inhibitor in 0.5 M aerated sulfuric acid', Corr. Sci., 44, 1995 (2002) https://doi.org/10.1016/S0010-938X(02)00020-3
  2. M. Scendo, D. Poddebniak, and J. Malyszko, 'Indole and 5-chlorindole as inhibitors of anodic dissolution and cathodic deposition of copper in acidic chloride solutions', J. Appl. Electrochem., 33, 287 (2003) https://doi.org/10.1023/A:1024117230591
  3. M. Scendo, 'Corrosion inhibition of copper by potassium ethyl xanthate in acidic chloride solutions', Corr. Sci., 47, 2778 (2005) https://doi.org/10.1016/j.corsci.2004.12.001
  4. K. Rahmouni, M. Keddam, A. Srhiri, and H. Takenouti, 'Corrosion of copper in 3% NaCl solution polluted by sulphide ions', Corr. Sci., 47, 3249 (2005) https://doi.org/10.1016/j.corsci.2005.06.017
  5. E. M. Sherif and S.-M. Park, '2-amino-5-ethyl-l,3,4-thiazole as a corrosion inhibitor for copper in 3.0% NaCl solutions', Corr. Sci., 48, 4065 (2006) https://doi.org/10.1016/j.corsci.2006.03.011
  6. E. M. Sherif and S.-M. Park, 'Inhibition of copper corrosion in acidicpickling solutions by N-phenyl-l,4-phenylenediammine', Electrochim. Acta, 51, 4665 (2006) https://doi.org/10.1016/j.electacta.2006.01.007
  7. W. J. Albery and M. L. Hitchman, 'Ring-Disk Electrodes', Clarendon Press, Oxford, Chap. 6, (1971)
  8. U. Bertocci and D. R. Turner, in A. J. Bard (Ed.) 'Encyclopedia of Electrochemistry of the Elements,' Marcel Dekker, New York, Vol.II, Chap. 6, (1974)
  9. B. J. Hathaway, in G. Wilkinson, R. D. Gilard, and J. A. MacCleverty(Eds), 'Comprehensive Coordination Chemistry' Pergamon Press, Oxford, Chap., 53 (1987)
  10. M. Pourbaix, 'Atlas of Electrochemical Equilbria in Aqueous Solutions,' NACE, Houston, Chap. 14, (1974)
  11. U. Bertocci and D. D. Wagman, in A. J. Bard, R. Parson, and J. Jordan (Eds), 'Standard Potentials in Aqueous Solutions,' Marcel Dekker, New York, Chap. 11, (1985)
  12. D. T. Napp, D. C. Johnson, and S. Bmckenstein, 'Simultaneous and independent potentiostatic contro of two indicator electrodes. Application to the copper(II)/copper(I) system 0.5 M potassium chloride at the rotating ring-disk electrode.', Anal. Chem., 39, 481 (1967) https://doi.org/10.1021/ac60248a017
  13. J. Crousier, L. Paradessus, and J. P. Crousier, 'Voltammetry study of copper in chloride solution', Electrochim. Acta, 33, 1039 (1988) https://doi.org/10.1016/0013-4686(88)80192-0
  14. H. Otmacic, J. Telegdi, K. Papp, and E. Stupnis-Lisac, 'Protective properties of an inhibitor layer formed on copper in neutral chloride solution', J. Appl. Electrochem., 34, 545 (2004) https://doi.org/10.1023/B:JACH.0000021873.30314.eb
  15. E. Mattson and J. Q'M Bockris, 'Galvanostatic studies of the kinetics of deposition and dissolution in the copper+copper sulphate system', Trans. Faraday Soc., 55, 1586 (1959) https://doi.org/10.1039/tf9595501586
  16. J. O'M Bockris and M. Enyo, 'Mechanism of electrodeposition and dissolution processes of copper in aqueous solution', Trans. Faraday Soc., 58, 1187 (1962) https://doi.org/10.1039/tf9625801187
  17. T. Hurlen, G. Ottesen, and A. Staurset, 'Kinetics of copper dissolution and deposiyion in aqueous sulphate solution', Electrochim. Acta, 23, 39 (1978) https://doi.org/10.1016/0013-4686(78)87031-5
  18. H. P. Lee and K. Nobe, 'Kinetics and Mechanisms of Cu Electrodissolution in Chloride Media', J. Elctrochem. Soc., 133, 2035 (1986) https://doi.org/10.1149/1.2108335
  19. S. Magaino, 'Corrosion rate of copper rotating-disk-electrode in simulated acid rain', Electrochim. Acta, 42, 377 (1997) https://doi.org/10.1016/S0013-4686(96)00225-3
  20. I. V. Kreizer, I. K. Marshakov, and N. M. Tutukina, 'Kinetics of Active Anodic Dissolution of Copper in Bicarbonate Media', Protection of Metals, 38, 444 (2002) https://doi.org/10.1023/A:1020394712306
  21. S. N. Ovchinnikova, T. P. Alekandrova, and A. A. Vais, 'Copper in Acid Chloride Solutions: Electrochemical Behavior by Quartz Microgravimetry and Voltammetry', Russ. J. Electrochem., 40, 755 (2004) https://doi.org/10.1023/B:RUEL.0000035261.95595.e9
  22. D. Tromans and R. Sun, 'Anodic polarization behavior of copper in aqueous chloride/benzotriazole solution', J.Electrochem. Soc., 138, 3235 (1991) https://doi.org/10.1149/1.2085397
  23. F. K. Crundwell, 'The anodic dissolution of copper in hydrochloric acid solutions', Electrochim. Acta, 37, 2707 (1992) https://doi.org/10.1016/0013-4686(92)85197-S
  24. W. H. Safranek, in F. A. Lowenheim(Ed), 'Modern Electroplating,' 3rd Ed. John-Wiley, New York, Chap.7 (1974)
  25. S. Treimer, A. Tang, and D. C. Johnson, 'A Cosideration of the Application of Koutecky-Levich Plots in the Diagnoses of Charge-Transfer Mechanisms at Rotated Disk', Electroanalysis, 14(3), 165 (2002) https://doi.org/10.1002/1521-4109(200202)14:3<165::AID-ELAN165>3.0.CO;2-6
  26. A. Bard and L. Faulkner, 'Electrochemical Method,' 2nd Ed. John-Wiley, New York, Chap. 9 (2001)
  27. D. Sazou and M. Pagitsas, 'Current oscillations associated with pitting corrosion processes induced by iodide on the partially passive cobalt surface polarized in sulphuric acid solutions', Electrochim. Acta, 38, 835 (1993) https://doi.org/10.1016/0013-4686(93)85041-V
  28. H. Takenouti, et al. 'Aminotriazole as corrosion inhibitor of Cu-30Ni alloy in 3% NaCl in presence of ammoniac', Electrochim. Acta, 49, 2771 (2004) https://doi.org/10.1016/j.electacta.2004.01.038
  29. D. Gallant and S. Simard, 'A study on the localized corrosion of cobalt in bicarbonate solutions containing halide ions', Corros, Sci., 47, 1810 (2005) https://doi.org/10.1016/j.corsci.2004.08.008
  30. G. Kear, B. D. Barker, and F. C. Walsh, 'Electrochemical corrosion of unalloyed copper in chloride media- a critical review', Corr. Sci., 46, 109 (2004) https://doi.org/10.1016/S0010-938X(02)00257-3
  31. P. Bommersbach, C. Alemany-Dumont, J-P. Millet, and B. Normand, 'Hydrodynamic effect on the behavior of a corrosion inhibitor film: Characterization by electrochemical impedance spectroscopy', Electrachim. Acta, 51, 4011 (2006) https://doi.org/10.1016/j.electacta.2005.11.020

Cited by

  1. Inhibition Effect of a Few Amino Acids on the Corrosion of Copper in Aerated Artificial Sea Water vol.54, pp.6, 2010, https://doi.org/10.5012/jkcs.2010.54.6.680
  2. Hydrodynamic and Oxygen Effects on Corrosion of Cobalt in Borate Buffer Solution vol.58, pp.5, 2014, https://doi.org/10.5012/jkcs.2014.58.5.437
  3. Corrosion and Passivation of Nickel Rotating Disk Electrode in Borate Buffer Solution vol.57, pp.5, 2013, https://doi.org/10.5012/jkcs.2013.57.5.533