• 제목/요약/키워드: $Ni_3$Al

검색결과 1,022건 처리시간 0.03초

Microstructure and Mechanical Properties of Ni3Al Matrix Composites with Fine Aluminum Oxide by PM Method

  • Han, Chang-Suk;Choi, Dong-Nyeok
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.495-498
    • /
    • 2018
  • Intermetallic compound matrix composites have been expected to be established as high temperature structural components. $Ni_3Al$ is a representative intermetallic alloy, which has excellent ductility even at room temperature by adding certain alloying elements. $Ni_3Al$ matrix composites with aluminum oxide particles, which are formed by the in-situ reaction between the alloy and aluminum borate whiskers, are fabricated by a powder metallurgical method. The addition of aluminum borate whiskers disperses the synthetic aluminum oxide particles during sintering and dramatically increases the strength of the composite. The uniform dispersion of reaction synthesized aluminum oxide particles and the uniform solution of boron in the matrix seem to play an important role in the improvement in strength. There is a dramatic increase in strength with the addition of the whisker, and the maximum value is obtained at a 10 vol% addition of whisker. The $Ni_3Al$ composite with 10 vol% aluminum oxide particles $0.3{\mu}m$ in size and with 0.1 wt% boron powder fabricated by the conventional powder metallurgical process does not have such high strength because of inhomogeneous distribution of aluminum oxide particles and of boron. The tensile strength of the $Ni_3Al$ with a 10 vol% aluminum borate whisker reaches more than twice the value, 930 MPa, of the parent alloy. No third phase is observed between the aluminum oxide and the matrix.

Mo를 첨가한 Ni/Al2O3 촉매의 수증기 개질반응에서의 내구성 증진 특성연구 (Study on Effects of Ni/Al2O3 Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions)

  • 원종민;박기우;이진우;홍성창
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.560-567
    • /
    • 2016
  • 본 연구에서는 $Ni/Al_2O_3$ 촉매의 수증기 개질반응 및 표면 특성을 조사하였다. 조촉매로써 선정된 Mo를 담지하여 제조한 Ni-Mo계 촉매를 Ni계 촉매와 반응활성 비교결과 효율증진 인자를 확인할 수 있다. $H_2$-TPR 및 XPS 분석을 통하여 효율이 저하되는 특성을 확인하였다. 수증기 개질반응 long run 실험 후 촉매표면에 침적된 carbon의 침적특성 및 결합구조, 기화특성을 확인하기 위하여 $O_2$-TPO 분석을 수행하였다. 본 연구를 통하여 수증기 개질반응에서 Ni과 강한 상호작용으로 결합하여 촉매의 반응활성 저하를 일으키는 graphitic carbon 종 형성을 억제함으로 Ni-Mo계 촉매에서 내구성이 증진됨을 확인할 수 있다.

$L1_{2}-Ni_{3}Al$ 금속간화합물의 강도특성에 관한 연구 (A Study on the Strength Characteristics of $L1_{2}-Ni_{3}Al$ Intermetallic Compound)

  • 한창석;천창환;한승오
    • 열처리공학회지
    • /
    • 제22권1호
    • /
    • pp.8-15
    • /
    • 2009
  • Structural studies have been performed on precipitation hardening found in $Ni_{3}Al$ based ordered alloys using transmission electron microscopy (TEM). Tilt experiments by the weak-beam method were made to obtain some information concerning the cross slip mechanism of the superlattice dislocation. The strength of ${\gamma}'-Ni_3$(Al,Ti) increases over the temperature range of experiment by the precipitation of fine $\gamma$ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature. Over the whole temperature range, the interaction between dislocation and $\gamma$ precipitates is attractive. On the temperature range of 773 K to 973 K, the dislocations in ${\gamma}'$ matrix move on (111) primary slip plane. When the applied stress is removed, the dislocations make cross slip into (010) plane, while those in $\gamma$ precipitates remain on the (111) primary slip plane. The increase of high temperature strength in ${\gamma}'-Ni_3$(Al,Ti) containing $\gamma$ precipitates is due to the restraint of cross slip of dislocations from (111) to (010) by the dispersion of disordered $\gamma$ particles.

무전해 Ni 복합도금 과정에서 분발의 공석 기구에 대한 연구(I) (A Study on the Mechanism for the Formation of Partices in electroless Ni Composite Coating(I))

  • 이원해;이승평
    • 한국표면공학회지
    • /
    • 제22권2호
    • /
    • pp.69-77
    • /
    • 1989
  • Codeposion of inert particles particles in a metallic mateix by electroless plating process involves two phenomena. Firstly, the adsorption of inercles and secondly, the adsorption of inert particles on the cathode. In the present paper the first adsorption phenomenon and in the next paper the second ane are studied in greaterdetail for the Ni-SiCc, Ni-Al2AO3 and Ni-WC systems. Measurements of the Zeta potentials for the SiC and Al2AO3 particles have been in different electrolyte solutions and the ionic species adsorbed on the Particles studied. The addition of sodium acetate, trisodium citrate and sodium phosphinate to nikel sulface sruomotes the zeta potential of SiC and Al2O3 particles, but zeta phosphinate to nickel is more positive than Al2O3 particles although the amount of nickel ion adsorbrd on the Al2O3 particles become greater than that of SiC particles. It is suggested that this is due to adsortion of Na ion onto the surface SiC particles.

  • PDF

Formation of Amorphous Oxide Layer on the Crystalline Al-Ni-Y Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제43권4호
    • /
    • pp.173-176
    • /
    • 2013
  • The oxidation behavior of the crystallized $Al_{87}Ni_3Y_{10}$ alloy has been investigated with an aim to compare with that of the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The oxidation at 873 K occurs as follows: (1) growth of an amorphous aluminum-yttrium oxide layer (~10 nm) after heating up to 873 K; and (2) formation of $YAlO_3$ crystalline oxide (~220 nm) after annealing for 30 hours at 873 K. Such an overall oxidation step indicates that the oxidation behavior in the crystallized $Al_{87}Ni_3Y_{10}$ alloy occurs in the same way as in the amorphous $Al_{87}Ni_3Y_{10}$ alloy. The simultaneous presence of aluminum and yttrium in the oxide layer significantly enhances the thermal stability of the amorphous structure in the oxide phase. Since the structure of aluminum-yttrium oxide is dense due to the large difference in ionic radius between aluminum and yttrium ions, the diffusion of oxygen ion through the amorphous oxide layer is limited thus stabilizing the amorphous structure of the oxide phase.

저온 연소합성 후 확산 열처리한 $Ni_{3}Al$ 금속간화합물 코팅층의 미끄럼 마모거동 (Analysis of Wear Properties for $Ni_{3}Al$ Layer coated on Ferrous Materials by Diffusion Treatment after Combustion Synthesis at low Temperature)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.7-12
    • /
    • 2009
  • Coating brittle intermetallic compounds on metal can enlarge the range of their use. It is found that intermetallic compound coating layers made by only combustion synthesis in an electric furnace have porous multi-phase structures containing several intermediate phases, even though the coating layers show good wear resistance. In this study, dense $Ni_{3}Al$ single phase layer corresponding to the initial composition of the mixed powder is coated on two different ferrous materials by the diffusing treatment after combustion synthesis. After- ward, sliding wear behaviors of the coating layer are evaluated in comparison with that of the coating layer with porous multi-phase structure made by only combustion synthesis. As a result, the wear properties of the coating layer composed of dense $Ni_{3}Al$ single phase are considerably improved at the range of low sliding speed com- pared with that of the coating layer with porous multi-phase structure, particularly in the running-in wear region. This is attributed to the fact that wear of the coating layer is progressed by shearing as a sequence of adhesion, not by occurring of pitting on the worn surface due to having dense structure without pores.

니켈계 용사층의 조직 및 열피로 특성 (Microstructure and Thermal Fatigue Properties of Flame-Sprayed Nickel-Based Coatings)

  • 김형준;권영각
    • 한국표면공학회지
    • /
    • 제29권3호
    • /
    • pp.163-175
    • /
    • 1996
  • Flame-sprayed Ni-based coatings are investigated in order to improve the thermal fatigue properties of gray cast iron in the presence of water spraying. The results of thermal cycling tests from room temperature to $1100^{\circ}C$ indicate that thermal fatigue endurance is increased in the order of Ni-20%Cr, NiCr-6%Al, and Ni-5%Al. The thermal fatigue failure is caused by the formation of iron oxides between the coating and the substrate and then the thermal fatigue cracks have propagated either along the brittle iron oxide layer resulting in the spatting of the coatings in case of Ni-5%Al and NiCr-6%Al coatings or to the substrate resulting in the whole specimen fracture in case of Ni-20%Cr coating. It seems that the most governing factor for thermal fatigue resistance is the thermal expansion coefficient difference between the coating and the substrate. Microstructural variations before and after the tests are also discussed.

  • PDF

A Strategy for Phase Identification of Precipitates in High Al-containing Austenitic and Ferritic Steels Using Electron Diffraction

  • Heo, Yoon-Uk
    • Applied Microscopy
    • /
    • 제44권4호
    • /
    • pp.144-149
    • /
    • 2014
  • A strategy for phase identification of precipitates in high Al-containing austenitic and ferritic steels using electron diffraction (ED) is studied. Comparative studies of the various Al-containing precipitates (k-carbide, $Ni_3Al$, $Fe_3Al$, FeAl) show the similarities of crystal structure and lattice parameter. However, the slight differences of lattice parameter and structure display characteristic ED patterns (EDPs) which can be identified. $L1_2$ k-carbide and $Ni_3Al$ can be differentiated by the length of ${\rightarrow}_g$ (the reciprocal lattice vector), even though they show perfectly identical shapes of EDPs. $DO_3$ $Fe_3Al$ and $B_2$ FeAl show the characteristic EDs in [110] and [112] beam directions due to the differences of Fe site occupancies in unit cells. k-carbide, $Ni_3Al$, and FeAl show also the similar EDs in [112], [112], and [110] beam directions, respectively. All the possible similarities of EDs among each phases and the strategy for phase identification are discussed on the bases of kinematical ED simulation.