• Title/Summary/Keyword: $Ni_2O_3$

Search Result 1,942, Processing Time 0.03 seconds

Evaluation of Magnetic and Thermal Properties of Ferrite Nanoparticles for Biomedical Applications

  • Tomitaka, Asahi;Jeun, Min-Hong;Bae, Seong-Tae;Takemura, Yasushi
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.164-168
    • /
    • 2011
  • Magnetic nanoparticles can potentially be used in drug delivery systems and for hyperthermia therapy. The applicability of $Fe_3O_4$, $CoFe_2O_4$, $MgFe_2O_4$, and $NiFe_2O_4$ nanoparticles for the same was studied by evaluating their magnetization, thermal efficiency, and biocompatibility. $Fe_3O_4$ and $CoFe_2O_4$ nanoparticles exhibited large magnetization. $Fe_3O_4$ and $NiFe_2O_4$ nanoparticles exhibited large induction heating. $MgFe_2O_4$ nanoparticles exhibited low magnetization compared to the other nanoparticles. $NiFe_2O_4$ nanoparticles were found to be cytotoxic, whereas the other nanoparticles were not cytotoxic. This study indicates that $Fe_3O_4$ nanoparticles could be the most suitable ones for hyperthermia therapy.

A Study on Optimization of Manufacturing Condition for LiNi1/3Mn1/3Co1/3O2-based Cathode Electrode (LiNi1/3Mn1/3Co1/3O2계 정극활물질을 적용한 전극 제조조건 최적화 연구)

  • Kim Hyun-Soo;Kim Sung-Il;Lee Chang-Woo;Moon Seong-In;Kim Woo-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.139-144
    • /
    • 2006
  • A fabrication condition of the cathode electrode was optimized in a lithium secondary battery. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ powders were used as a cathode material. The $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$/Li cells were prepared with a certain formulation and their cycleability and rate-capability were evaluated. Optimum electrode composition simulated from the evaluated value was 86.3: 5.6: 8.1 in mass $\%$ of active material: binder: conducting material. Discharge capacity decreased markedly as the press ratio exceeded $30\%$ during preparation of the electrode. Discharge performance at a high current rate deteriorated abruptly as the electrode thickness was over $120{\mu}m$.

Synthesis of Metal and Ceramic Magnetic Nanoparticles by Levitational Gas Condensation (LGC)

  • Uhm, Y.R.;Lee, H.M.;Lee, G.J.;Rhee, C.K.
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.75-79
    • /
    • 2009
  • Nickel (Ni) and ferrite ($Fe_3O_4$, $NiFe_2O_4$) nanoparticles were synthesized by LGC using both wire feeding (WF) and micron powder feeding (MPF) systems. Phase evolution and magnetic properties were then investigated. The Ni nanopowder included magnetic-ordered phases. The LGC synthesis yielded spherical particles with large coercivity while the abnormal initial magnetization curve for Ni indicated a non-collinear magnetic structure between the core and surface layer of the particles. Since the XRD pattern cannot actually distinguish between magnetite ($Fe_3O_4$) and maghemite (${\gamma}-Fe_2O_3$) as they have a spinel type structure, the phase of the iron oxide in the samples was unveiled by $M{\ddot{o}}ssbauer$ spectroscopy. The synthesized Ni-ferrite consisted of single domain particles, including an unusual ionic state. The synthesized nanopowder bore an active surface due to the defects that affected abnormal magnetic properties.

The Effect of Substrate Temperature on the Electrical, Electronic, Optical Properties and the Local Structure of Transparent Nickel Oxide Thin Films

  • Lee, Kangil;Kim, Beomsik;Kim, Juhwan;Park, Soojeong;Lee, Sunyoung;Denny, Yus Rama;Kang, Hee Jae;Yang, Dong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.397-397
    • /
    • 2013
  • The electrical, electronic, optical properties and the local structure of Nickel Oxide (NiO) thin film have been investigated by X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), UV-spectrometer,Hall Effect measurement and X-ray absorption spectroscopy (XAS). The XPS results show that the Ni 2p spectra for all films consist of $Ni2p_{3/2}$ at around 854.5 eV which indicate the presence of Ni-O bond from NiO phase and for the annealed film at temperature above $200^{\circ}C$ shows the coexist Ni oxide and Ni metal phase. The REELS spectra showed that the band gaps of the NiO thin films were abruptly decreased with increasing temperature. The values of the band gaps are consistent with the optical band gaps estimated by UV-Spectrometer. The optical transmittance spectra shows that the transparency of NiO thin films in the visible light region was deteriorated with higher temperature due to existence of $Ni^0$. Hall Effect measurement suggest that the NiO thin films prepared at relatively low temperatures (RT and $100^{\circ}C$) are suitable for fabricating p-type semiconductor which showed that the best properties was achieved at $100^{\circ}C$, such as a low resistivity of $7.49{\Omega}.cm$. It can be concluded that the annealing process plays a crucial role in converting from p type to n type semiconductor which leads to reducing electrical resistivity of NiO thin films. Furthermore, the extended X-ray absorption fine structure (EXAFS) spectrum at the Ni K-edge was used to address the local structure of NiO thin films. It was found that the thermal treatments increase the order in the vicinity of Ni atom and lead the NiO thin films to bunsenite crystal structure. Moreover, EXAFS spectra show in increasing of coordination number for the first Ni-O shell and the bond distance of Ni-O with the increase of substrate temperature.

  • PDF

Tunneling Magnetoresistance in Si/$SiO_2$/NiFe/$Al_2$$O_3$/Co Thin Films (Si/$SiO_2$/NiFe/$Al_2$$O_3$/Co 박막의 투과자기저항 특성 연구)

  • 현준원;백주열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.934-940
    • /
    • 2001
  • Magnetic properties were investigated for Si/SiO$_2$/NiFe(300 )/A1$_2$O$_3$(t)/Co(200 ) junction related with the parameters of $Al_2$O$_3$. Insulating $Al_2$O$_3$ layer was formed by depositing a 5~40 thick Al layer, followed by a 90~120s RF plasma oxidation in an $O_2$ atmosphere. Magnetoresistance was not observed for tunnel junction with 5~10 thick Al layer, but magnetoresistance was observed large for tunnel junction with 15~40 thick Al layer. Oxidation time did not largely influence magnetoresistance. Tunnel magnetoresistance effect depended on magnetization behavior of two ferromagnetic layers. Tunneling junction was confirmed through nonlinear I-V curve. In this work, tunneling magnetoresistance(TMR) up to 30 % was observed. This apparent TMR is an artifact of the nonuniform current flow over the junction in the cross geometry of the electrodes.

  • PDF

Catalytic synthesis and properties of β-Ga2O3 nanowires by metal organic chemical vapor deposition (MOCVD를 이용한 금속 촉매 종류에 따른 β-Ga2O3 나노 와이어의 제작과 특성)

  • Lee, Seunghyun;Lee, Seoyoung;Jeong, Yongho;Lee, Hyojong;Ahn, Hyungsoo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Catalytic synthesis and properties of ${\beta}-Ga_2O_3$ nanowires grown by metal organic chemical vapor deposition are reported. Au, Ni and Cu catalysts were suitable for the growth of $Ga_2O_3$ nanowires under our experimental conditions. The $Ga_2O_3$ nanowires grown by using Au, Ni and Cu catalysts showed different growth rates and morphologies in each case. We found the $Ga_2O_3$ nanowires were grown by the Vapor-Solid (VS) process when Ni was used as a catalyst while the Vapor-Liquid-Solid (VLS) was a dominant process in case of Au and Cu catalysts. Also, we found nanowires showed different optical properties depend on catalytic metals. On the other hand, for the cases of Ti, Sn and Ag catalysts, nanowires could not be obtained under the same condition of Au, Cu and Ni catalytic synthesis. We found that these results are related to the different characteristics of each catalyst, such as, melting points and phase diagrams with gallium metal.

Preparation of Pt-, Ni- and Cr-Decorated SnO2 Tubular Nanofibers and Their Gas Sensing Properties (Pt, Ni, Cr이 도포된 튜브형 SnO2 나노섬유의 합성과 가스 감응특성)

  • Kim, Bo-Young;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.211-215
    • /
    • 2014
  • The Pt-, Ni- and Cr-decorated tubular $SnO_2$ nanofibers for gas sensors were prepared by the electrospinning of polyvinylpyrrolidone (PVP) nanofibers containing Pt, Ni, and Cr precursors, the sputtering of $SnO_2$ on the electrospun PVP nanofibers, and the removal of sacrificial PVP parts by heat treatment at $600^{\circ}C$ for 2 h. Pt-decorated tubular $SnO_2$ nanofibers showed high response ($R_a/R_g=210.5$, $R_g$: resistance in gas, $R_a$: resistance in air) to 5 ppm $C_2H_5OH$ at $350^{\circ}C$ with negligible cross-responses to other interference gases (5 ppm trimethylamine, $NH_3$, HCHO, p-xylene, toluene and benzene). Cr-decorated tubular $SnO_2$nanofibers showed the selective detection of p-xylene at $400^{\circ}C$. In contrast, no significant selectivity to a specific gas was found in Ni-decorated tubular $SnO_2$ nanofibers. The selective and sensitive detection of gases using Pt-decorated and Cr-decorated tubular $SnO_2$ nanofibers were discussed in relation to the catalytic promotion of gas sensing reaction.

Physical Properties of Polycrystalline Mn2O3-Substituted LiNiBi Ferrite (Mn2O3가 LiNiBi Ferrite의 물리적 특성에 미치는 영향)

  • Koh Sae Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.655-658
    • /
    • 2004
  • Lithium ferrites are a low-cost material which have been prominent in the high frequency core industry because of their excellent temperature performance and high squareness ratio. In order to develope the lithium ferrites with the high squareness and low coercive force, the ferrites of $Li_{0.48}Bi_{0.02}Ni_{0.04}Fe_{2.46-x}O_4$ were investigated the by varying composition, temperature and frequency. Electric loss of the Li-ferrite was lowered with the substitution of $Mn_{2}O_3$. The addition of $Mn_{2}O_3$ increased the magnetic induction (Bm&Br) but decreased the coercive force (Hc) and the squareness ratio (R=Br/Bm). Also, the Br value was stable at environmental temperature variation.