• Title/Summary/Keyword: $NiS_2$

Search Result 1,584, Processing Time 0.029 seconds

Electronic Structure of [NiS4]- Investigated by Single-Crystal EPR and Density Functional Theory

  • Min, Su-Young;Noh, Dong-Youn;Choi, Cheol-Ho;Lee, Hong-In
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.1
    • /
    • pp.78-90
    • /
    • 2012
  • To understand the electronic structure of $[NiS_4]^-$ complex ions, two complexes with such $[NiS_4]^-$ core, $FcCH=CHPymCH_3[Ni(dmit)_2]$ (Pym = pyridinium, $dmit^{2-}$ = 2-thioxo-1,3-dithiole-4,5-dithiolate) and $FcCH=CHPymCH_3[Ni(dddt)_2]{\cdot}{\frac{1}{2}}H_2O$ ($dddt^{2-}=5,6-dihydro-1,4-dithiin-2,3-dithiolato$), were synthesized to be characterized by X-ray crystallography, single crystal electron paramagnetic resonance (EPR) and density functional theory (DFT) calculation. Powder EPR spectra show narrow g-anisotropy but the anisotropy is bigger in $[Ni(dmit)_2]^-$ than in $[Ni(dddt)_2]^-$, indicating bigger spin density in Ni(III) d-orbital of $[Ni(dmit)_2]^-$ than in $[Ni(dddt)_2]^-$, which is consistent to DFT results. EPR studies of the crystals of the complexes surprisingly suggest that the $g_y$-axis of $[Ni(dddt)_2]^-$ is approximately on or perpendicular to the $[NiS_4]^-$ plane while the $g_y$-axis of $[Ni(dmit)_2]^-$ is on the plane, though DFT study of the complexes of this study and previously reported $[NiS_4]^-$ complexes indicate that the $g_y$-axis is on the $[NiS_4]^-$ plane.

Synthesis, Sytructure, and Magnetic Properties of One-Dimensional Thiophoshates, $Al_2NiP_2S_6$ (A=Rb, Cs) (1차원 구조를 갖는 Thiophoshates, $Al_2NiP_2S_6$ (A=Rb, Cs)의 합성, 구조 및 자기적 성질)

  • Dong, Yong Kwan;Lee, Kun Soo;Yun, Ho Seop;Hur, Nam Hwi
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.242-246
    • /
    • 2001
  • The quaternary thiophosphates, $A_2NiP_2S_6$ (A=Rb, Cs), have been synthesized with halide fluxes and structurally characterized by single-crystal X-ray diffraction technique. These compounds crystallize in the space group $C_{2h}^5-P2_1/n$ of the monoclinic system with two formula units in a cell of dimensions a=5.960(2), b=12.323(4), $c=7.491(3)\AA$, $\beta=97.05(3)^{\circ}$, and $V=546.0(3)\AA^3$ for Rb2NiP2S6 and a=5.957(4), b=12.696(7), $c=7.679(4)\AA$, $b=93.60(5)^{\circ}$, and $V=579.7(5)\AA^3$ for $Cs_2NiP_2S_6.$ These compounds are isostructural. The structure of $Cs_2NiP_2S_6$ is made up of one-dimensional $_\infty^1[NiP_2S_6^{2-}]$ chains along the a axis and these chains are isolated by $Cs^+$ ions. The Ni atom is octahedrally coordinated by six S atoms. These Ni$S_6$ octahedral units are linked by sharing three m-S atoms of the $[P_2S_6^{4-}]$ anions to form the infinite one-dimensional $_\infty^1[NiP_2S_6^{2-}]$ chain. For $Cs_2NiP_2S_6$, the magnetic susceptibility reveals an antiferromagnetic exchange interaction below 8K,which corresponds to the Neel temperature ($T_N$). Above $T_N$, this compound obeys Curie-Weiss law. The magnetic moment, C, and ${\theta}forCs_2NiP_2S_6$ are 2.77 B.M., 0.9593 K, and -19.02 K, respectively. The effective magnetic moment obtained from the magnetic data is agreed with the spin-only value of $Ni^{2+}d^8$(2.83 B.M.) system.

  • PDF

Chemical Reactivity between Ni(II)-Macrocycle Complex Ions ($NiL_m{^{2+}}$) and $CN^-$ (Ni(II)-거대고리 리간드 착이온 ($NiL_m{^{2+}}$) 과 $CN^-$ 이온간의 반응성)

  • Yu-Chul Park;Jong-Chul Byun
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.334-343
    • /
    • 1987
  • The Chemical reactions between $NiL_m{^{2+}}\{$Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}$}\and\ CN^-$ ion were studied by the spectrophotometric method. The equilibrium constants (K_1$) for the 1:1 complex ion, $[NiL_m(CN)]^+\;with\;NiL_m{^{2+}}\;and\;CN^-$ ion were determined in the range of 3 to $25^{\circ}C$. The $K_1\;for\;Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;Ni(1[14]4-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;at\;15^{\circ}C$ was 4.7, 5.3, 6.2, 7.5, 9.4, and 9.8, respectively. The values of $K_1$ decreased with increasing temperature. From the temperature effect on equilibrium constant ($K_1$), thermodynamic parameters $({\Delta}H^{\circ},\;{\Delta}S^{\circ},\;{\Delta}G^{\circ})$ for reaction were evaluated and the reaction of $NiL_m{^{2+}}\;and\;CN^-$ ion was exothermic. $NiL_m{^{2+}\;reacts\;with\;CN^-$ ion to give $Ni(CN)_4{^{2-}}$ ion and macrocyclic ligand $(L_m)$. The kinetics of formation of the $Ni(CN)_4{^{2-}}$ ion of varying the $[CN^-],\;[HCN],\;and\;[OH^-]$ have been investigated at 3∼$25^{\circ}C\;and\;0.5M\;NaClO_4$. Maintaining a constant $[CN^-],\;k_{obs}/[CN^-]^2$ increases linearly with increasing [HCN]. In the presence of large quantities of $[OH^-],\;k_{obs}/[CN^-]^2$ also increases linearly with $[OH^-]$. From the temperature effect on kinetic constant (k_{obs})$, parameter of activation $({\Delta}H^{\neq},\;{\Delta}S^{\neq})$ of reaction of $NiL_m{^{2+}}\;with\;CN^-$ ion were determined. For the $Ni(rac-1[14]7-diene)^{2+},\;Ni(meso-1[14]7-diene)^{2+},\;{\alpha}-Ni(rac-[14]-decane)^{2+},\;{\beta}-Ni(rac-[14]-decane)^{2+},\;and\;Ni(meso-[14]-decane)^{2+}\;series\;{\Delta}H^{\neq}$ gradually decrease as the d-d transition energy, $ν(cm^{-1})$ decrease. And the reaction of the five $NiL_m{^{2+}}\;with\;CN^-$ ion take place by way of equal paths.

  • PDF

Synthesis of Ni-YSZ cermets for SOFC by glycine nitrate process (Glycine nitrate process에 의한 SOFC용 Ni-YSZ cermets 제조)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.289-294
    • /
    • 2010
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders for SOFC were fabricated by glycine nitrate process. $ZrO(NO_3)_2{\cdot}2H_2O$, $Y(NO_3)_3{\cdot}6H_2O$, $Ni(NO_3)_2{\cdot}6H_2O$ and glycine were chosen as the starting materials. The structural properties of the sintered Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. The sintered Ni-YSZ cermets showed a porous microstructure consists of homogeneously distributed Ni and YSZ phases and the grains were well-connected. It was found that the open porosity is sensitive to the volume content of Ni. The Ni-YSZ cermet containing 35 vol% Ni seems to be suitable for the electrode material of SOFC since it provides sufficient open porosity higher than 30%.

Thermodynamic Phase Equilibrium of Aqueous Fe-Ni-Cu-S-H2O Solution for Fe-Ni-Cu Alloy Plating (Fe-Ni-Cu 합금도금을 위한 Fe-Ni-Cu-S-H2O 용액의 열역학적 상의 안정도)

  • Baek, Yeol;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.123.2-123.2
    • /
    • 2017
  • Fe-Ni-Cu 합금 전주를 위하여 황화물 용액에의 상의 열역학적 안정도를 작성하고 전주 조건을 선정하였다. $Fe-Ni-Cu-S-H_2O$ 용액의 열역학적 상의 안정도를 전산모사하기 위한 프로그램은 C#으로 작성하였다. JANAF 자료를 근거한 적정 전주 조건은 $130mA/cm^2$, $50{\sim}55^{\circ}C$, pH 2.4 이었다. XRF을 이용한 Fe-Ni-Cu의 합금 도막의 평균 조성은 Fe-42Ni-1Cu [wt.%] 이었다, 전류밀도가 낮아질수록 Ni과 Cu량은 증가하였다. 구리 농도가 증가하면 표면조도는 60 nm로 변화하였다.

  • PDF

Exchange Coupling in NiFe/Ni Bilayer Fabricated By Electrodeposition

  • Kim, D.Y.;Jeon, S.J.;Kim, K.W.;Yoon, S.S.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.97-100
    • /
    • 2011
  • Bilayers of soft NiFe (150 nm-420 nm) on hard Ni (150 nm) were prepared by electrodeposition. The process of magnetization reversal in the NiFe/Ni bilayers was then investigated. The hysteresis loop generated by a magnetization reversal of soft NiFe under a positive saturation state of a hard Ni layer shows a shift along the negative field axis, which is clear evidence for the exchange spring effect in the NiFe/Ni bilayers. The dependence of the coercive field $H_c$ and exchange bias field Hex on the thickness of the NiFe layer was also investigated. As the NiFe thickness increases from 150 nm to 420 nm, both $H_c$ and $H_{ex}$ decrease rapidly from $H_c$= 51.7 Oe and $H_{ex}$ = 12.2 Oe, and saturate to $H_c$ = 5.8 Oe and $H_{ex}$ = 3.5 Oe.

Enhanced Photocatalytic Efficiency of Nanoscale NiS2/TiO2 Catalysts Synthesized by Hydrothermal and Sol-gel Method

  • Zhu, Lei;Meng, Ze-Da;Ghosh, Trisha;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.2
    • /
    • pp.135-141
    • /
    • 2012
  • To improve the visible-light induced photocatalytic application performances of $TiO_2$, in this study, the $NiS_2$ modied $TiO_2$ composites were prepared by two methods: hydrothermal method and sol-gel method. The composites were denoted as hs-$NiS_2$/$TiO_2$, and sg-$NiS_2$/$TiO_2$ and characterized by XRD, UV-vis absorbance spectra, SEM, TEM, EDX, and BET analysis. The photocatalytic activities under visible light were investigated by the degradation of methyl orange (MO). The photodegradation rate of methyl orange under visible light with $NiS_2$/$TiO_2$ composites was markedly higher than that of pure $TiO_2$, and the effect of hs-$NiS_2$/$TiO_2$ composites was better than that of sg-$NiS_2$/$TiO_2$. The results indicate that the hydrothermal process could partly inhibit the agglomeration of $NiS_2$/$TiO_2$. Thus, the dispersion of nanoparticles was improved, and that the promoting effect of $NiS_2$ could extend the light absorption spectrum toward the visible region.

Decomposition Reaction of Methanol over Ni-Cu/SiO$_2$Catalyst (Ni-Cu/SiO$_2$촉매 상에서의 메탄올 분해 반응)

  • 박지영;문승현;윤형기;박성룡;이상남;정승용
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.65-71
    • /
    • 1996
  • Decomposition reaction of methanol was conducted on Ni-Cu/SiO$_2$catalysts with several variables. Variables used in this study are S.V(Space Velocity), partial pressure of methanol, reaction temperature, and composition rate of Ni-Cu. The range of S.V is 10,000-30,000h$\^$-1/, the temperature range is 150-400$^{\circ}C$ and values of Cu/(Ni+Cu) are 0, 0.25, 0.5, 0.75, and 1. Over Ni/SiO$_2$, and Ni-Cu/SiO$_2$, the conversion rate of decomposition reaction of methanol arrived at 100% with increasing of temperature. At this time the selectivity of CO on Ni/SiO$_2$, was suddenly decreased, but on Ni-Cu/SiO$_2$, it was still sustained highly. The main products of reaction were CO and H$_2$, and by-products were CO$_2$ and CH$_4$mainly.

  • PDF

Effect of Eu in Partial Oxidation of Methane to Hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) Catalysts (Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 수소제조를 위한 메탄의 부분 산화 반응에서 Eu의 효과)

  • Seo, Ho Joon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.478-482
    • /
    • 2021
  • The catalytic yields of partial oxidation of methane (POM) to hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) were investigated in a fixed bed flow reactor under atmosphere. As 1 wt% of Eu was added to Ni(5)/SBA-15 catalyst, the O1s and Si2p core electron levels of Eu(1)-Ni(5)/SBA-15 showed the chemical shift by XPS. XPS analysis also demonstrated that the atomic ratio of O1s, Ni2p3/2, and Si2p increased to 1.284, 1.298, and 1.058, respectively, and exhibited O-, and O2- oxygen and metal ions such as Eu3+, Ni0, Ni2+, and Si4+ on the catalyst surface. The yield of hydrogen on the Eu(1)-Ni(5)/SBA-15 was 57.2%, which was better than that of Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Pr, and Tb), the catalytic activity was kept steady even 25 h. As 1 wt% of Eu was added to Ni(5)/SBA-15, the oxygen vacancies caused by strong metal-support interaction (SMSI) effect due to the strong interaction between metals and carrier are made. They are resulted in increasing the dispersion of Ni0, and Ni2+ nano particles on the surface of catalyst, and are kept catalytic activity.

Synthesis of Cathode Material-Nickel Sulfides by Mechanical Alloying for Sodium Batteries

  • Liu, Xiaojing;Ahn, Hyo-Jun;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.182-188
    • /
    • 2012
  • In this study, fine cathode materials $Ni_3S_2$ and $NiS_2$ were synthesized using the simple, convenient process of mechanical alloying (MA). In order to improve the cell properties, wet milling processes were conducted using low-energy ball milling to decrease the mean particle size of both materials. The cells of Na/$Ni_3S_2$ and Na/$NiS_2$ show a high initial discharge capacity of 425 mAh/g and 577 mAh/g respectively using wet milled powder particles, which is much larger than commercial ones, providing some potential as new cathode materials for rechargeable sodium-ion batteries.