DOI QR코드

DOI QR Code

Enhanced Photocatalytic Efficiency of Nanoscale NiS2/TiO2 Catalysts Synthesized by Hydrothermal and Sol-gel Method

  • Zhu, Lei (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Meng, Ze-Da (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Ghosh, Trisha (Department of Advanced Materials Science & Engineering, Hanseo University) ;
  • Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
  • Received : 2011.10.15
  • Accepted : 2012.01.18
  • Published : 2012.03.31

Abstract

To improve the visible-light induced photocatalytic application performances of $TiO_2$, in this study, the $NiS_2$ modied $TiO_2$ composites were prepared by two methods: hydrothermal method and sol-gel method. The composites were denoted as hs-$NiS_2$/$TiO_2$, and sg-$NiS_2$/$TiO_2$ and characterized by XRD, UV-vis absorbance spectra, SEM, TEM, EDX, and BET analysis. The photocatalytic activities under visible light were investigated by the degradation of methyl orange (MO). The photodegradation rate of methyl orange under visible light with $NiS_2$/$TiO_2$ composites was markedly higher than that of pure $TiO_2$, and the effect of hs-$NiS_2$/$TiO_2$ composites was better than that of sg-$NiS_2$/$TiO_2$. The results indicate that the hydrothermal process could partly inhibit the agglomeration of $NiS_2$/$TiO_2$. Thus, the dispersion of nanoparticles was improved, and that the promoting effect of $NiS_2$ could extend the light absorption spectrum toward the visible region.

Keywords

References

  1. D. Chatterjee and S. Dasgupta, "Visible Light Induced Photocatalytic Degradation of Organic Pollutants," J. Photochem. Photobiol., C 6 186-205 (2005).
  2. V. Augugliaro, M. Litter, L. Palmisano, and J. Soria, "The Combination of Hetero-geneous Photocatalysis with Chemical and Physical Operations: a Tool for Improving the Photoprocess Performance," J. Photochem. Photobiol., C 7 127-44 (2006).
  3. D.H. Kim, D. Choi, S. Kim, and K.S. Lee, "The Effect of Phase Type on Photocatalytic Activity in Transitionmetal Doped $TiO_2$ Nanoparticles," Catal. Commun., 9 654-57 (2008). https://doi.org/10.1016/j.catcom.2007.07.017
  4. J. Yang, H. Bai, Q. Jiang, and J. Lian, "Visible-light Photocatalysis in Nitrogen-carbon- Doped $TiO_2$ Lms Obtained by Heating $TiO_2$ Gel-lm in an Ionized $N_2$ Gas," Thin. Solid. Films., 516 1736-42 (2008). https://doi.org/10.1016/j.tsf.2007.05.034
  5. D. Jiang, Y. Xu, B. Hou, D. Wu, and Y. Sun, "Synthesis of Visible Light-activated $TiO_2$ Photocatalyst Via Surface Organic Modication," J. Solid State Chem., 180 1787-91 (2007) . https://doi.org/10.1016/j.jssc.2007.03.010
  6. R. Brahimi, Y. Bessekhouad, A. Bouguelia, and M. Trari, "Improvement of Eosin Visible Light Degradation Using PbS-sensititized $TiO_2$," J. Photochem. Photobiol., A 194 173-80 (2008).
  7. R. Vogel, P. Hoyer, and H. Weller, "Quantum-sized PbS, CdS, $Ag_2S,\;Sb_2S_3$ Particles as Sensitizers for Various Nanoporous Wide-bandgap Semiconductors," J. Phys.Chem., 98 3183-8 (1994). https://doi.org/10.1021/j100063a022
  8. A.I. Kryukov, S.Y. Kuehmii, and V.D. Pokhodenko, "Energetics of Electron Processes in Semiconductor Photocatalytic Systems," Theor. Exp. Chem., 36 63-81 (2000). https://doi.org/10.1007/BF02529022
  9. D. Robert, "Photosensitization of $TiO_2\;by\;M_xO_y\;and\;M_xS_y$ Nanoparticles for Heterogeneous Photocatalysis Applications," Catal. Today., 122 20-6 (2007). https://doi.org/10.1016/j.cattod.2007.01.060
  10. J.C. Kim, J. Choi, Y.B. Lee, J. H. Hong, J.I. Lee, J.W. Yang, W. I. Lee, and N. H. Hur, "Enhanced Photocatalytic Activity in Composites of $TiO_2$ Nanotubes and CdS Nanoparticles," Chem. Commun., 48 5024-26 (2006).
  11. Y. Bessekhouad, D. Robert, and J.V. Weber, "$Bi_2S_3/TiO_2$ and $CdS/TiO_2$ Heterojunctions as an Available Conguration for Photocatalytic Degradation of Organic Pollutant," J. Photochem. Photobiol., A 163 569-80 (2004).
  12. V. Puddu, R. Mokaya, and G.L. Puma, "Novel One Step Hydrothermal Synthesis of $TiO_2/WO_3$ Nanocompositeswith Enhanced Photocatalytic Activity," Chem. Commun., 45 4749-51 (2007).
  13. V. Stengl, S. Bakardjieva, N. Murafa, V. Hou skova, and K. Lang, "Visible-light Photocatalytic Activity of $TiO_2/ZnS$ Nanocomposites Prepared by Homogeneous Hydrolysis," Micropor. Mesopor. Mater., 110 370-78 (2008). https://doi.org/10.1016/j.micromeso.2007.06.052
  14. K.B. Tang, Y.T. Qian, J.H. Zeng, and X.G. Yang, "Solvothermal Route to Semiconductor Nanowires," Adv. Mater., 15 448-50 (2003). https://doi.org/10.1002/adma.200390104
  15. R. Luo, X. Sun, L. F. Yan, and W. M. Chen, "Synthesis and Optical Properties of Novel Nickel Disulfide Dendritic Nanostructures," Chem. Lett., 33 830-31 (2004). https://doi.org/10.1246/cl.2004.830
  16. E. K. Li, K. H. Johnson, D. E. Eastman, and J. L. "Freeouf, Localized and Bandlike Valence-Electron States in $FeS_2$ and $NiS_2$," Phys. Rev. Lett., 32 470-72 (1974). https://doi.org/10.1103/PhysRevLett.32.470
  17. L. L. Wang, Y.C. Zhu , H. B. Li, Q.W. Li, and Y. T. Qian, "Hydrothermal Synthesis of NiS Nanobelts and $NiS_2$ Microspheres Constructed of Cuboids Architectures," J. Solid State Chem., 183 223-27 (2010). https://doi.org/10.1016/j.jssc.2009.10.021
  18. K. Byrappa, T. Adschiri, "Hydrothermal Technology for Nanotechnology," Prog. Cryst. Growth Charact. Mater., 53 117-66 (2007). https://doi.org/10.1016/j.pcrysgrow.2007.04.001
  19. D. W. Kim, D. S. Kim, Y. G Kim, Y. C. Kim, and S. G. Oh "Preparation of Hard Agglomerates Free and Weakly Agglomerated Antimony Doped Tin Oxide (ATO) Nanoparticles by Coprecipitation Reaction in Methanol Reaction Medium," Mater. Chem. Phys., 97 452-57 (2006). https://doi.org/10.1016/j.matchemphys.2005.08.046
  20. S. U. M. Khan, M. Al-Shahry, and W.B.Ingler, "Efficient Photochemical water Splitting by a Chemically Modified $n-TiO_2$" Science, 297 2243-45 (2002). https://doi.org/10.1126/science.1075035
  21. P. P. Yang, J.F Yu, N.X, J. Wang, and T.H. Wu, "Influence of Synthesis Method on the Properties and Catalytic Performance of MCM-49 Zeolites," Catal. Commun., 8 997-1002 (2007). https://doi.org/10.1016/j.catcom.2006.10.016
  22. Z. D. Meng, L. Zhu, J. G. Choi, M. L. Chen, and W. C. Oh, "Effect of Pt Treated Fullerene / $TiO_2$ on the Photocatalytic Degradation of MO Under Visible Light," J. Mater. Chem., 21 7596-603 (2011). https://doi.org/10.1039/c1jm10301f
  23. K. K. Akurati, A. Vital, J. P. Dellemann, K. M. Michalow, D. Ferri, T. Graule, and A. Baiker, "Flame-made $WO_3/TiO_2$ Nanoparticles: Relation between Surface Acidity, Structure and Photocatalytic Activity," Appl. Catal. B: Environ., 79 53-62 (2008). https://doi.org/10.1016/j.apcatb.2007.09.036
  24. W. C. Oh, "Review of Carbon Based Titania Photocatalysts," J. Photocatal. Sci., 1 29-34 (2010) .
  25. L. Zhu, Z. D. Meng, M. L. Chen, F. J. Zhang, J. G. Choi, Z. Y. Park, and W. C. Oh, "Photodegradation of MB Solution by the Metal (Fe, Ni and Co) Containing $AC/TiO_2$ Photocatalyst under the UV Irradiation," J. Photocatal. Sci., 1 69-76 (2010) .
  26. J. X. Yu, B. H. Li, X. M. Sun, Y. Jun, and R. A. Chi, "Adsorption of Methylene Blue and Rhodamine B on Baker's Yeast and Photocatalytic Regeneration of the Biosorbent," Biochem. Eng.J., 45 145-51 (2009). https://doi.org/10.1016/j.bej.2009.03.007
  27. X.D. Yu, Q. Y. Wu, S. C. Jiang, and Y. H. Guo, "Nanoscale $ZnS/TiO_2$ Composites: Preparation, Characterization, and Visible-light Photocatalytic Activity.," Mater. Characterization., 57 333-41 (2006). https://doi.org/10.1016/j.matchar.2006.02.011
  28. F. J. Zhang, J. Liu, M. L. Chen, and W. C. Oh, "Photo-electrocatalytic Egradation of Dyes in Aqueous Solution Using $CNT/TiO_2$ Electrode," J. Kor. Ceram. Soc., 46 263-70 (2009). https://doi.org/10.4191/KCERS.2009.46.3.263
  29. X. W. Zhang, M. H. Zhou, and L. C. Lei, "Preparation of Photocatalytic $TiO_2$ Coating of Nanosized Particles Supported on Activated Carbon by AP-MOCVD," Carbon., 43 1700-8 (2005). https://doi.org/10.1016/j.carbon.2005.02.013
  30. Y. Li, X. Li, J. Li, and J. Yin, "Photocatalytic Degradation of Methyl Orange by $TiO_2$-coated Activated Carbon and Kinetic Study," Water Research., 40 1119-26 (2006). https://doi.org/10.1016/j.watres.2005.12.042
  31. H. Li, B. Zhu, Y. Feng, S. Wang, S. Zhang, and W. Huang, "Synthesis, Haracterization of $TiO_2$ Nanotubes-supported MS ($TiO_2NTs@MS$, M=Cd, Zn) and their Photocatalytic Activity," J. Solid. State. Chem., 180 2136-42 (2007). https://doi.org/10.1016/j.jssc.2007.05.013
  32. Y. Xie, S. H. Heo, Y. N. Kim, S. H. Yoo and S. O. Cho, "Improved Conversion Efficiency of CdS Quantum Dots-sensitized $TiO_2$ Nanotube Array Using ZnO Energy Barrier Layer," Nanotechnology., 21 015702 (2010). https://doi.org/10.1088/0957-4484/21/1/015702
  33. J. P. Hoare, pp. 49-66 in Standard Potentials in Aqueous Solution, Chap. 4, Ed. by A.J. Bard, R. Parsons, and J. Jordan, Marcel Dekker, New York, 1985.

Cited by

  1. Composite Photocatalyst vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.504
  2. Efficient sorption and photocatalytic degradation of malachite green dye onto NiS nanoparticles prepared using novel green approach vol.32, pp.10, 2015, https://doi.org/10.1007/s11814-015-0041-y
  3. hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime vol.28, pp.11, 2017, https://doi.org/10.1088/1361-6528/aa5cf2
  4. Sn:In2O3 and Sn:In2O3/NiS2 Core–Shell Nanowires on Ni, Mo Foils and C Fibers for H2 and O2 Generation vol.121, pp.50, 2012, https://doi.org/10.1021/acs.jpcc.7b09587