• Title/Summary/Keyword: $NiMn_2O_4$

Search Result 303, Processing Time 0.031 seconds

Characteristics of Mn-Ni-Co system for automobile fuel shortage detecting sensor with $Bi_2O_3$ addition ($Bi_2O_3$를 첨가한 Mn-Ni-Co계 써미스타의 자동차 연료 부족 감지용 센서 특성)

  • 윤중락;이헌용;김두용;오창섭
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.455-462
    • /
    • 1996
  • Automobile Fuel Shortage Detecting Sensor, in this paper, was fabricated by using heat dissipation coefficient difference between gasoline and air condition the NTC thermistor of Mn-Ni Co system with the composition ratio of Mn$_{3}$O$_{4}$ : 9wt%, NiO : 28wt%, and CO$_{3}$O$_{4}$ : 61wt%. The condition of sensor operation is that, for turn-on characteristics, the time of arriving at 135mA must be less than 180 second when the DC voltage of 11V is applied in the air condition of -10.deg. C and that, for turn-off characteristics, the saturation current must be less than 60mA when the DC voltage of 15V is applied in the gasoline condition of 60.deg. C. It is known, from the experimental results, that the resistance range and B-constant for the Automobile Fuel Shortage Detecting Sensor with dimension of 5*3*0.9mm were 850-1150.ohm. and 1150-1250.deg. C, respectively and the resistance range and B-constant were agree with that of sensor operation condition. When Bi$_{2}$O$_{3}$ of 0-0.5wt% was added to Mn$_{3}$O$_{4}$ : 9wt%, NiO : 28wt%, and CO$_{3}$O$_{4}$ : 61wt% composition, the resistivity and B-value were 380-430(.ohm.-cm) and 1930 - 2030, respectively. Particularly, for Bi$_{3}$O$_{3}$ of 0.25-0.5wt%, the sintering density of over 90% and the operation characteristics necessary to Automobile Fuel Shortage Detecting Sensor were obtained. The difference of heat dissipation coefficient gasoline and air condition was 15 times.

  • PDF

NiZn Ferrite Coating for Electrical Insulation of MnZn Ferrite Cores

  • Kitamoto, Y.;Yajima, H.;Nakayama, Y.;Abe, M.
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.6
    • /
    • pp.506-508
    • /
    • 2001
  • The ferrite plating with applying power ultrasound waves of 19.5 kHz and 600W enabled us to encapsulate entirely MnZn ferrite cores for transformers with Ni$\sub$x/Zn$\sub$y/Fe$\sub$3-x-y/O$_4$coating. Supplying a NH$_4$OH solution during the plating broke the limit of the solubility of Ni ions to ferrite-plated films. The electrical resistivity of the NiZn ferrite coating increased with increasing the Ni and Zn content, reaching 2.3${\times}$10$\^$5/Ωcm at the composition of Ni$\sub$0.24/Zn$\sub$0.30/Fe$\sub$2.46/O$_4$. The saturation magnetization was 540 emu/㎤. As a result, the MnZn ferrite cores were successfully encapsulated with the NiZn ferrite coatings for an insulation layer.

  • PDF

Pt Thickness Dependence of Oscillatory Interlayer Exchange Coupling in [CoFe/Pt/CoFe]/IrMn Multilayers with Perpendicular Anisotropy

  • Lee, Sang-Suk;Choi, Jong-Gu;Kim, Sun-Wook;Hwang, Do-Guwn;Rhee, Jang-Roh
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.44-47
    • /
    • 2005
  • The oscillatory interlayer exchange coupling (IEC) has been shown in pinned $[CoFe/Pt(t_{pt})/CoFe]/IrMn$ multi-layers with perpendicular anisotropy. The period of oscillation corresponds to about 2 monolayers of Pt. The oscillatory behavior of IEC depending on the nonmagnetic metallic Pt thickness is thought to be related the antiferromagnetic ordering induced by IrMn layer. Oscillatory IEC as function of insulating NiO thickness has been observed in $[Pt/CoFe]_4/NiO(t_{NiO})/[CoFe/Pt]_4$ multilayers. The effect of N (number of bilayer repeats) upon the magnetic property of [Pt/CoFe]N/IrMn is also studied.

A Fuel shortage detected sensor using NTC thermistor of Mn-Ni-Co system (Mn-Ni-Co계 NTC thermistor를 이용한 연료 부족 감지용 센서)

  • 윤중락;김두영;송광호;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.347-350
    • /
    • 1995
  • In this paper, we fabricated fuel shortage detecting sensor, utilizing NTC thermistor concerned with Mn-Ni-Co system. We would be obtained B constant value of 1930∼2080 and resistivity 387∼430(ohm-cm) additive Bi$_2$O$_3$0∼0.5 wt% to Mn$_3$O$_4$:9wt%, Co$_3$O$_4$:61wt%, NiO:28wt% under 1150∼1250$^{\circ}C$ of sintering temperature. In sensor, we obtained characteristics, which we want, in resistance range 850∼l150$\Omega$, B constant 2000${\pm}$5%. we can see 15 multiplied differences between gasoline and heat dissipation coefficient of air condition.

  • PDF

Physical Properties of Polycrystalline Mn2O3-Substituted LiNiBi Ferrite (Mn2O3가 LiNiBi Ferrite의 물리적 특성에 미치는 영향)

  • Koh Sae Gui
    • Korean Journal of Materials Research
    • /
    • v.14 no.9
    • /
    • pp.655-658
    • /
    • 2004
  • Lithium ferrites are a low-cost material which have been prominent in the high frequency core industry because of their excellent temperature performance and high squareness ratio. In order to develope the lithium ferrites with the high squareness and low coercive force, the ferrites of $Li_{0.48}Bi_{0.02}Ni_{0.04}Fe_{2.46-x}O_4$ were investigated the by varying composition, temperature and frequency. Electric loss of the Li-ferrite was lowered with the substitution of $Mn_{2}O_3$. The addition of $Mn_{2}O_3$ increased the magnetic induction (Bm&Br) but decreased the coercive force (Hc) and the squareness ratio (R=Br/Bm). Also, the Br value was stable at environmental temperature variation.

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping (Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성)

  • Jang, Byeong-Chan;Yoo, Gi-Won;Yang, Su-Bin;Min, Song-Gi;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.222-228
    • /
    • 2014
  • Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.

Effect of Ni addition on anodically deposited $MnO_2$ film (Anodic deposition된 $MnO_2$ 막에 있어서 Ni 첨가 영향)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Chung, Won-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1535-1537
    • /
    • 2003
  • Manganese oxide electrode was designed to improve electrical conductivity for dimensionally stable anode(DSA) using discreet variation (DV)-X${\alpha}$ method. It was calculated in DV-X${\alpha}$ method that the addition of nickel to manganese oxide reduce the energy band gap of manganese oxide electrode. Therefore, it is estimated that nickel in 3 additive elements of Ti, Ni and Sn is the best candidate to improve the electrical conductivity of manganese oxide. The anodically deposited manganese oxide which was produced in 0.2M $MnSO_4$ and 0.2M (Mn,Ni)$SO_4$ solution had $MnSO_4$ structure which was identified by XRD. The $MnSO_4$ films produced in both solutions over than 50mA/$cm^2$ of current density and long deposition time of 600sec showed low adhesion with Ti substrate.

  • PDF

Dielectric and Piezoelectric Properties of $MnO_2$-Added 0.4P$(Ni_{1/3}Nb_{2/3})O_3-xPbTiO_3-yPbZrO_3$ Ceramics with Variation of PZ/PT Ratio ($MnO_2$ 가 첨가된 0.4P$(Ni_{1/3}Nb_{2/3})O_3-xPbTiO_3-yPbZrO_3$ 세라믹스에서의 PZ/PT비 변화에 따른 유전 및 압전 특성)

  • Paik, Jong-Hoo;Kim, Chang-Il;Lim, Eun-Kyeong;Lee, Mi-Jae;Ji, Mi-Jeong;Choi, Byung-Hyun;Kim, Sei-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.169-170
    • /
    • 2005
  • 본 연구에서는 초음파 센서에 응용 가능한 $0.4Pb(Ni_{1/3}Nb_{2/3})O_3-0.6Pb(Zr_xTi_{1-x})O_3+0.5Wt%$ $MnO_2$ 세라믹스에 Zr/(Ti+Zr)비를 0.37에서 0.41로 변화시킨 조성을 1175 $\sim$ 1200$^{\circ}C$ 온도에서 소결하여 이의 결정구조 및 미세조직을 분석하였고, 압전, 유전 특성을 고찰하였다. 본조성에서 x=0.385 조성에서 최대 유전상수 값 3490 이 나타났으며, 그 이상의 첨가에서는 감소하였다. 상경계 영역인 x=0.385 조성에서 $\varepsilon$r, $K_p$, $d_{33}$ 값이 최대값을 나타내었다. $0.4Pb(Ni_{1/3}Nb_{2/3})O_3-0.6Pb(Zr_xTi_{1-x})O_3+0.5Wt%$ $MnO_2$, 세라믹스에서는 kp 와 $d_{33}$ 는 Zr/(Ti+Zr)비 0.385조성까지 증가하였다가 그 이상 조성에서 감소하였다. $1175^{\circ}C$에서 2시간 소결한 x=0.385조성에서 $\varepsilon$r=3490, kp=0.71, Qm=476의 우수한 압전 특성을 나타내었다.

  • PDF