• Title/Summary/Keyword: $Ni/{\gamma}-Al_2O_3$

Search Result 48, Processing Time 0.028 seconds

Reforming of Propane by Carbon Dioxide using Ni/γ-A12O3 Catalysts (Ni/γ-Al2O3 촉매상에서 이산화탄소에 의한 프로판의 개질)

  • Kim, K. H.;Kim, J. H.;Chang, S. C.;Park, D. W.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.382-388
    • /
    • 1997
  • Reforming of propane by carbon dioxide using NiO/${\gamma}$-$A1_2O_3$ was carried out in a pulse or continuous kid bed reactor. NiO/${\gamma}$-$Al_2O_3$ showed higher dissociation ability of $CO_2$ than NiO/${\gamma}$-$Al_2O_3$, and the former exhibited higher conversion of propane than the latter. The presence of oxygen in the reaction mixture of propane and $CO_2$ increased the conversion of propane and reduced the amount of carbon deposit on the catalyst surface. Mechanical mixture catalyst of NiO/${\gamma}$-$Al_2O_3$ and $Ga_2O_3$ showed higher stability to deactivation than NiO/${\gamma}$-$Al_2O_3$ itself. The synergistic effect between NiO/${\gamma}$-$Al_2O_3$ and $Al_2O_3$ was also observed in this study.

  • PDF

Activity and Selectivity in Low Temperature for Dibenzothiophene Hydrodesulfurization based Zeolite Support (제올라이트 담체상의 디벤조티오펜 수첨탈황반응에서 저온활성 및 선택성)

  • Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1998
  • Two types of CoMo/zeolite as well as $NiMo/{\gamma}-Al_2O_3$ were prepared and their activities and selectivities of low-temperature dibenzothiophene(DBT) hydrodesulfurization(HDS) were studied in high pressure fixed bed reactor. The HDS activities of CoMo/zeolites were higher than that of $NiMo/{\gamma}-Al_2O_3$ at temperatures below $225^{\circ}C$ while they were lower than that of $NiMo/{\gamma}-Al_2O_3$ at temperatures higher than $275^{\circ}C$. The main products from $NiMo/{\gamma}-Al_2O_3$ were biphenyl and cyclohexylbenzene. The product distribution of CoMo/zeolite catalysts was different from that of $NiMo/{\gamma}-Al_2O_3$. It is speculated that DBT is converted to alkylcyclohexane over zeolite based catalysts through both alkylation and hydrogenation reactions. The crystal structure of molybdenum was $MoO_3$ in fresh zeolite support while mixtures of $MoO_3$ and $MoS_2$ were observed in the aged catalyst.

  • PDF

Preparation of Ni-doped Gamma Alumina from Gibbsite and Its Characteristics (깁사이트로부터 니켈피착 감마알루미나의 제조 및 특성)

  • Lee, Hyun;Chung, In-Sung;Park, Hee-Chan
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1158-1164
    • /
    • 1998
  • Aluminium sulfate solution was prepared by sulfuric acid treatment from gibbsite. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was precipitated from aluminium sulfate solution by adding it into ethylalcohol. From XRD analysis as-prepared $Al_2(SO_4)_3$ · $nH_2O$ was confirmed to have mixed-crystalization water(n=18, 16, 12, 6). The average water of crystalization calculated from thermogravimetry(TG) was 14.7. Aluminium sulfate hydrate [$Al_2(SO_4)_3$ · $nH_2O$] was thermally decomposed and converted to $Al_2(SO_4)_3$ at $800^{\circ}C$, $\gamma-Al_2O_3$ at $900-1000^{\circ}C$, and $\alpha-Al_2O_3$ at $1200^{\circ}C$. Ni-doped $\gamma-Al_2O_3$, was synthesized from the slurry of as-prepared $\gamma-Al_2O_3$, with the ratio of [Ni]/[Al]=0.5. The reaction conditions of synthesis were determined as initial pH 9.0 and temperature $80^{\circ}C$ The basicity(pH) of slurry was controlled by using urea and $NH_4OH$ solution. Urea was also used for deposition-precipitation. For determining termination of reaction, the data acquisition was performed by oxidation reduction potential(ORP), conductivity and pH value in the process of reaction. Termination of the reaction was decided by observing the reaction steps and rapid decrease in conductivity. On the other hand, BET(Brunauer, Emmett and Teller) and thermal diffusity of Ni- doped $\gamma-Al_2O_3$, with various content of Ni were measured and compared. Thermal stability of Ni- doped $\gamma-Al_2O_3$ at $1250^{\circ}C$ was confirmed from BET and XRD analysis. The surface state of Ni-doped $\gamma-Al_2O_3$ was investigated by X-ray photoelectron spectroscopy(XPS). The binding energy at $Ni2P_{3/2}$ increased with increasing the formation of $NiAl_2O_4$ phase.

  • PDF

A Study on the Sulfur-Resistant Catalysts for Water Gas Shift Reaction III. Modification of $Mo/γ-Al_2O_3$ Catalyst with Iron Group Metals

  • Park, Jin Nam;Kim, Jae Hyeon;Lee, Ho In
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1233-1238
    • /
    • 2000
  • $Mo/{\gamma}-Al_2O_3catalysts$ modified with Fe, Co, and Ni were prepared by impregnation method and catalytic activity for water gas shift reaction was examined. The optimum amount of Mo loaded for the reaction was 10 wt% $MoO_3$ to ${\gamma}-Al_2O_3.$ The catalytic activity of $MoO_3/{\gamma}-Al_2O_3was$ increased by modifying with Fe, Co, and Ni in the order of Co${\thickapprox}$ Ni > Fe. The optimum amounts of Co and Ni added were 3 wt% based on CoO and NiO to 10 wt% $MoO_3/{\gamma}-Al_2O_3$, restectively. The TPR (temperature-programmed reduction) analysis revealed that the addition of Co and Ni enganced the reducibility of the catalysts. The results of both catalytic activity and TPR experiments strongly suggest that the redox property of the catalyst is an important factor in water gas shift reaction on the sulfided Mo catalysts, which could be an evidence of oxy-sulfide redox mechanism.

Decomposition Study of Acetaldehyde by Metal-oxide Catalysts (금속산화물 촉매에 의한 $CH_3CHO$의 분해반응 연구)

  • Lee, Chang-Seop;Kim, Young-Eun;Choi, Sung-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.2 s.35
    • /
    • pp.25-30
    • /
    • 2007
  • The catalysts for decomposition reaction of acetaldehyde were investigated. The catalysts were prepared with transition metal Ni, Mo, Al on ${\gamma}-Al_2O_3$ support by impregnation method. Physio-chemical properties of catalysts were characterized by SEM-EDS, XRD, XPS, BET and TPR techniques. The conversion efficiency of catalysts for acetaldehyde was measured in the temperature range of $150{\sim}500^{\circ}C$ by GC through the micro reactor system. The 8 wt% $Ni/{\gamma}-Al_2O_3$ was found to be the most active catalyst of mono-metal catalysts tested, and the 1-3 wt% $Ni-Al/{\gamma}-Al_2O_3$ showed higher conversion efficiency than other bimetallic catalysts.

  • PDF

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor (충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질)

  • Sultana, Lamia;Rahman, Md. Shahinur;Sudhakaran, M.S.P.;Hossain, Md. Mokter;Mok, Young Sun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2019
  • A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.

Characteristics of Ni/3d Series Transition Metal/γ-Al2O3 Catalysts and their Hydrogen Production Abilities from Butane Steam Reforming

  • Lee, Jun-Su;Choi, Byung-Hyun;Ji, Mi-Jung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3281-3289
    • /
    • 2011
  • The materials composed of the 3d series transition metals are introduced into the hydrocarbon steam-reforming reaction in order to enhance the $H_2$ production and abruptly depress the catalytic deactivation resulting from the strong sintering between the Ni component and the ${\gamma}-Al_2O_3$ support. The conventional impregnation method is used to synthesize the Ni/3d series metal/${\gamma}-Al_2O_3$ materials through the sequentially loading Ni source and the 3d series metal (Ti, V, Cr, Mn, Fe, Co, Cu, and Zn) sources onto the ${\gamma}-Al_2O_3$ support. The Mnloaded material exhibits a significantly higher reforming reactivity than the conventional Ni/${\gamma}-Al_2O_3$ and the other Ni/3d series metal/${\gamma}-Al_2O_3$ materials. Particularly the addition of Mn selectively improves the $H_2$ product selectivity by eliminating the formation of $CH_4$ and CO. The $H_2$ production is maximized at a value of 95% over Ni(0.3)/Mn(0.3)/${\gamma}-Al_2O_4$(1.0) with a butane conversion of 100% above $750^{\circ}C$ for up to 55 h.

The Effect of Carrier in CO2 Reforming of CH4 to Syngas over Ni-based catalysts

  • Seo, Ho Joon;Kang, Ung Il;Yu, Eui Yeon
    • Clean Technology
    • /
    • v.5 no.2
    • /
    • pp.63-68
    • /
    • 1999
  • The activities of Ni(20wt%)/$La_2O_3$, Ni(20wt%)/${\gamma}-Al_2O_3$, and Ni(20wt%)/$SiO_2$ catalyst for $CO_2$ reforming of $CH_4$ were investigated in a fixed bed flow reactor under atmospheric condition. Catalyst characterization using XRD, TEM, SEM, BET analysis were also conducted. The catalytic activity of Ni(20wt%)/$La_2O_3$ catalyst has relatively superior to that of Ni(20wt%)/${\gamma}-Al_2O_3$ and Ni(20wt%)/$SiO_2$ catalyst. The good activity of Ni(20wt%)/$La_2O_3$ catalyst seems to depend on reduced $Ni^{\circ}$ phases of NiO($\rightarrow$ Ni + O), $LaNiO_3$($\rightarrow$ $Ni+La_2O_3$), Ni crystalline phases, and decoration of Ni phases by lanthanum species is also an important factor. Ni(20wt%)/${\gamma}-Al_2O_3$ and Ni(20wt%)/$SiO_2$ catalyst due to surface acidity resulted in the deposition of wisker type and encapsulate carbon on the surface of catalyst, but Ni(20wt%)/$La_2O_3$ catalyst did not show carbon on the surface of catalyst up to 8.5hr reaction.

  • PDF

Microstructural Observation of Scales formed on HVOF-sprayed NiCoCrAlY Coatings (HVOF 용사된 NiCoCrAlY 코팅의 산호막 관찰)

  • Ko J. H;Lee D. B
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.110-114
    • /
    • 2004
  • High velocity oxy-fuel sprayed NiCoCrAlY coatings were oxidized between 1000 and $1200^{\circ}C$ in air, and the oxide scales were examined by XRD, SEM/EDS, and EPMA. The unoxidized coatings consisted mainly of ${\gamma}$'$-Ni_3$Al, with some ${\gamma}$-Ni. The major oxide formed on the coatings was $\alpha$ $-Al_2$$O_3$. Additionally, (CoCr$_2$$O_4$, $CoAl_2$$O_4$) spinels and $Al_{5}$ $Y_3$$O_{12}$ coexisted. NiO was not found, despite of high amount of Ni in the coating. Below the oxide layer, internally formed $Al_2$$O_3$ existed.

Influence of Promoters on the Tungsten - Catalysts in Hydrodenitrogenation of Pyridine (Pyridine의 수첨탈질 반응에 있어서 텅스텐 촉매에 대한 조촉매의 영향)

  • 신동헌;박종희;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1987
  • A series of supported sulfided Ni-W/$\gamma-Al_2O_3$ and Co-W/$\gamma-Al_2O_3$ catalysts with different nickel and cobalt contents were studied in the hydrodenitrogenation of pyridine dissolved in n-heptane. The ranges of experimental conditions were at the temperatures between 453 and 753 K, and the pressures between 30 and 50 Bar. The catalytic activities with different nickel and cobalt contents were shown to be maximum at Ni/Ni+W = 0.2 - 0.3, Co/Co+W = 0.3 - 0.4. Pyridine conversion increased with pressure and temperature and the step of piperidine formation was found to be irreversible. The reaction orders in Ni-W/$\gamma-Al_2O_3$ and Co-W/$\gamma-Al_2O_3$ catalysts were the first with respect to pyridine and reaction rate constants decreased with increase of initial pyridine concentration and their activation energies were 12.98 and 9.23 kcal/mol, respectively.

  • PDF