• Title/Summary/Keyword: $NaNO_3$

Search Result 3,128, Processing Time 0.022 seconds

The Effect of Inhibitors and Catalysts in the Synthesis of 2-Hydroxyethyl Methacrylate(2-HEMA) (2-Hydroxyethyl Methacrylate(2-HEMA)의 합성에 있어서 중합억제제와 촉매의 영향)

  • Park, Byeong-Deog;Chae, Heon-Seung;Jang, Heung;Oh, Seung-Mo;Lee, Yoon-Sik
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.425-430
    • /
    • 1994
  • The effect of inhibitors and catalysts in the synthesis of 2-hydroxyethyl methacrylate(2-HEMA) was studied. As catalysts, triethylamine(TEA), $FeCl_3{\cdot}6H_2O$, $Cu(NO_3)_2{\cdot}2H_2O$, $AlCl_3$, $Na_2Cr_2O_7$were selected. p-Methoxyphenol (PMP) of aq. $NaNO_3$ solution was used as an inhibitor in polymerization. in aq. $NaNO_3$ inhibitor system, triethylamine (TEA), $FeCl_3{\cdot}6H_2O$, and $Na_2Cr_2O_7$, showed good catalytic effects. When p-methoxyphenol(PMP) was used as a polymerization inhibitor, the reaction was very sluggish and noneffective because the metal ion such as $Fe^{3+}$ or $Cr^{6+}$ was reduced by PMP. On the contrary, when aq. $NaNO_3$ was used as an inhibitor in polymerization, the reaction was very fast without deactivation of the metal catalysts.

  • PDF

Nitrate Metabolism Affected by Osmotic Stress and Nitrate Supply Level in Relation to Osmoregulation

  • Kim, Tae-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.77-84
    • /
    • 2000
  • Eight-week old perennial ryegrass (Lolium perenne L. cv. Reveille) plants were exposed to different NO3-concentrations or osmotic stress with NaCI. Previously labeled "N was chased during 14 days of non-labeled'NO3 feeding in order to investigate NO3 metabolism in relation to osmoregulation. The short termmeasurement of osmotic potential showed that the extemal concentration of Nos- had not great effect on theosmotic potential, but that osmotic adjustment was observed in NaCl-treated plants. Total uptake of NO 3 - waslargely increased by increasing supply level of NO3 while it was depressed by exposing to osmotic stress.Nitrate reduction increased to more than 29% by increasing extemal NO,- concentration from 1 mM to 10mM. When osmotically stressed with NaCI, nitrate reduction was depressed to about 37% as compared to thecontrol. The decrease in translocation of reduced N into leaves was also observed in NaCl exposed plants. Inthe medium exposed to 10 mM NO,., osmotic contribution of nitrate to cumulative osmotic potential wasdecreased, and it was osmotically compensated with soluble carbohydrate. When osmotically stressed withNaC1, the contribution of chloride was much higher than that of nitrate. The present data indicate that N03-in plant tissues, factually affected by the assimilation of this ion, plays an active role in osmotic regulation incorrelation with other osmotica such carbohydrate and chloride.(Key words : Nitrate metabolism, Osmotic stress, Nitrate supply level, Osmoregulation)ate supply level, Osmoregulation)

  • PDF

Directional solidification of rod eutectics in $NaNO_3$-NaCl system

  • Kim, Shin-Woo;Grugel, R.N.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.3
    • /
    • pp.122-124
    • /
    • 2008
  • The partial phase diagram of $NaNO_3$-NaCl system was investigated and the eutectic temperature was determined as $294.5^{\circ}C$. A typical rod eutectics of $NaNO_3$-4.56 wt%NaCl was directionally solidified. The results of interrod spacing, ${\lambda}_E$ as a function of growth velocity, V, were. obtained as ${\lambda}_E\;V^{0.39}\;=\;5.26$ (temperature gradient, $G_l\;=\;21.4^{\circ}C/mm$) and ${\lambda}_E\;V^{0.32}\;=\;5.45$ ($G_l\;=\;3.9^{\circ}C/mm$) and the exponent numbers of growth velocity were smaller than the theoretical value, 1/2. The sample rotation applied during directional solidification made the interrod spacing decrease slightly.

Studies on the Chemical Compositions and Distributions of Ambient Sumicron Aerosols (Submicron 부유분진의 화학적 조성 및 분포에 관한 연구)

  • 황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.1
    • /
    • pp.11-23
    • /
    • 1998
  • The purpose of this study was to survey chemical distribution of inorganic elements and ions in the submicron particles, to characterize qualitatively emitting sources by factor analysis, and finally to reveal existing patterns in terms of chemical compounds by a stepwise multiple regression analysis. Total of 141 samples were collected by a cascade impactor from 1989 to1996. Fifteen chemical species (Al, Ba, Cd, K, Pb, Cu, Fe, Ni, $Cl^-, NO_3^-, SO_4^{2-}, K^+, Mg^{2+}, Ca^{2+}, and Na^+$) were characterized by AAS and IC. The study showed that average seasonal levels of submicron particulate matters $(d_p<0.43 \mum)$ were 18.7 $\mug/m^3$ in spring, 15.5 $\mug/m^3$ in summer, 15.7 $\mug/m^3$ in fall, and 24.5 $\mug/m^3$ in winter, respectively. All of the anion concentrations in the particle were highest in the winter season. By applying a factor analysis, 5 source patterns were qualitatively obtained, such as sulfate related source, nitrate related source, oil burning source, calcium related source, and coal combustion source. Finally, when applying a stepwise multiple regression analysis, the results clearly showed that $Na^+ and Ca^{2+}, K^+ and Ca^{2+}, NO_3^-$ and relative humidity, $Cl^-$ and ambient temperature, $Ca^{2+} and Cl^-, Mg^{2+} and SO_4^{2-}, Na^+ and NO_3^-, and Ca^{2+} and NO_3^-$, respectively, are negatively contributed to each other. As a result of those statistical analysis, we could suggest that some chemical compounds in the submicron particles such as$NaNO_3, MgSO_4, Ca(NO_3)_2, and CaCl_2$ may not exist on the filter as final composing products; however, other compounds may possibly exist in the form of $Mg(NO_3)_2, CaSO_4, Na_2SO_4, K_2SO_4, MgCl_2, NaCl, and KCl$. Thus, it must be necessary to identify differences between the results of above statistical analysis and of the real world by laboratory experiments.

  • PDF

Effects of $NaBH_4$ and laponite on the stability of colloidal Ag nanoparticles (나노 은 콜로이드 입자의 안정성에 대한 $NaBH_4$ 및 Laponite의 영향)

  • Lee, Jung-Baek;Kim, Dong-Hwan;Seo, Jae-Seok;Kim, You-Hyuk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.250-255
    • /
    • 2006
  • The synthesis and characterization of silver colloidal nanoparticles by chemical reduction of silver ions in aqueous $AgNO_3$ using sodium borohydride $(NaBH_4)$ as the reducing agent are described. The experimental conditions for aggregation and paricle size of nanosilver particles in water is investigated in terms of concentration of $NaBH_4$, reaction temperature, dropping rate of $AgNO_3$ and concentration of laponite. Stable nanosilver sol is obtained at three molar ratio of $NaBH_4/AgNO_3$ in conditions of without laponite. The size of nanosilver particles is increased as the reaction temperature is increased. The large size of nanosilver sol is obseved as the dropping rate of $AgNO_3$ is increased due to the aggregation of initial high local concentration of nanosilver particles. Stable nanosilver sol at high temperature $(>\;100^{\circ}C)$ can be prepared when laponite is used as protective colloid.

Effect of Nitrogen Application Rate on Growth of Rumohra aristata and Cyclosorus dentatus of Korea Native Fern (질소시비량이 자생 가는쇠고사리와 탐라별고사리의 생육에 미치는 효과)

  • Hwang, Byoung-Tae;Ju, Jin-Hee;Bang, Kwang-Ja
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.3
    • /
    • pp.67-72
    • /
    • 2005
  • For the two species of native fern that have high development potential for interior landscape, Rumohra aristata and Cyclosorus dentatus, the physiological and growth characteries as nitrogen application rate such as $NaNO_3$ 0.0mg/L, $NaNO_3$ 0.5mg/L, $NaNO_3$5.0mg/L, $NaNO_3$ 50mg/L and $NaNO_3$ 500mg/L were surveyed. 1. A significant changes of Rumohra aristata, in top growth was not distinctive. However, as nitrogen application rate increased, the numbers of leaves declined and the content of chlorophyll and the number of wilted leaves increased. 2. As nitrogen application rate increased, the top growth of Cyclosorus dentatus and the content of chlorophyll was increased. However, its overall, ornamental value was reduced due to the rising number of wilted leaves and the declining number of new leaves.

Effect of High Concentrations of Sodium or Chloride Salts in Soil on the Growth of and Mineral Uptake by Tomatoes (토양에의 고농도 Na 및 Cl 염류가 토마토의 생육 및 무기성분 흡수에 미치는 영향)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.121-126
    • /
    • 2002
  • This study was conducted to investigate the effect of high concentration of sodium salts and chlorides in soil on the growth of tomato and the uptake of minerals. The growth inhibition rates of plant height and dry weight were different depending on salts, but they were not related to the electric conductivities (EC) and acidities (pH) in the soil solution. The orders of growth inhibition were Cl, SO$_4$, CO$_3$, PO$_4$>NO$_3$ in the sodium salts series, and Na, K, Mg, NH$_4$>Ca in the chlorides. The growth inhibition rates of the sodium salts series tended to be larger than those of the chloride series. Yield was lower 30%~10% in the sodium salt and chloride series than in the control. Chlorophyll content, photosynthetic rate and stomatal conductance were lower in the sodium salts and chloride series than in the control. Mineral concentration was lower in sodium salts and chlorides than in control. The nitrate absorption was inhibited in all salts except for NaNO$_3$ and NH$_4$Cl, and specially in NaCl and Na$_2$SO$_4$ treatments of the sodium salts and in KCl treatment of chloride series. K concentration was reduced NaCl and Na$_2$SO$_4$ treatments compared with the other salts. In the sodium salt series, calcium and magnesium concentration were decreased antagonistically when sodium concentration was increased.

N Mineralization and Nitrification in Forest Soils : Effect of Chemical Treatment on N Adsorption by Ion Exchange Resin (산림토양내(山林土壤內) 질소(窒素)의 양료화(養料化)와 질산화(窒酸化)에 관(關)한 연구(硏究) : ion 교환수지(交換樹指)의 처리(處理) 방법(方法)에 따른 질소(窒素)의 흡수율(吸收率) 변화(變化))

  • Lee, Chun Yong;Myrold, David D.
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.285-289
    • /
    • 1990
  • Soil N mineralization and nitrification can be measured conveniently using mixed bed (cation and anion) exchange resin bags. However, appropriate use of these resin bags requires pretreatment to avoid colorimetric interference and standardize N ion adsorption. Three pretreatments were evaluated : control (untreated), 2 M NaCl with a distilled water rinse, and 4 M NaCl. The 4 M NaCl treatment was effective at removing background levels of $NH_4{^+}$ and $NO_3{^-}$, but adsorbed low amounts (about 40%) of inorganic N from standard solutions. Untreated resin bags adsorbed a constant, higher amount of $NO_3{^-}$ (60%), but did not remove background levels of $NH_4{^+}$. The 2 M NaCl treatment followed by a distilled water rinse performed best : it removed background $NH_4{^+}$ and adsorbed a constant amount of both $NH_4{^+}$ (70%) and $NO_3{^-}$ (60%). Because the ion exchange resin is fairly expensive, we also tested if the resin bags could be reused. Resin bags were either loaded with $NH_4{^+}$ and $NO_3{^-}$ in the laboratory or incubated in soil in the field, desorbed with the 2 M NaCl treatment, and then loaded with standard $NH_4{^+}$ and $NO_3{^-}$ solutions. Lab loaded resin bags adsorbed about 60% of inorganic N then loaded with 2.5 or $5.0mgN\;1^{-1}$ and 70% when loaded at 10 or $20mgN\;1^{-1}$, whereas reused field incubated bags showed the opposite adsorption efficiency. These results demonstrate that resin bags can give reproducible results, but care must be taken to evaluate the effect of pretreatment and potential for reuse.

  • PDF

Tungsten Recovery from Tungsten Carbide by Alkali Melt followed by Water Leaching (알칼리 용융 및 수 침출을 이용한 탄화텅스텐으로부터 텅스텐 회수)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.91-96
    • /
    • 2017
  • Tungsten (W) recovery from tungsten carbide (WC) was researched by alkali melt followed by water leaching. The experiments of alkali melt were carried out with the change of the sort of alkali material, heating temperature, and the heating duration. Water leaching of W was performed in the fixed conditions ($25^{\circ}C$, 2 hr., slurry density: 10 g/L). From the mixture of WC and sodium nitrate ($NaNO_3$) in the molar ratio of 1:2, treated at $400^{\circ}C$ for 6 hours, only 63.3% of W might be leached by water leaching. With the increase of sodium hydroxide (NaOH) as a melting additive, the leachability increased. Finally it reached to 97.8 % with the melted mixture of ($WC:NaNO_3:NaOH$) in the ratio of (1:2:2). This imply that NaOH may play a role as a reaction catalyst by lowering Gibb's free energy for alkali melt reaction for WC.

Simultaneous Removal of $NO_x$ and $SO_2$ through the Combination of Sodium Chlorite Powder and Carbon-based Catalyst at Low Temperature ($NaClO_2(s)$와 탄소 분산형 촉매를 이용한 저온에서의 $NO_x$$SO_2$ 동시 제거)

  • Byun, Young-Chul;Lee, Ki-Man;Koh, Dong-Jun;Shin, Dong-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • NO oxidation is an important prerequisite step to assist the selective catalytic reduction (SCR) at low temperatures ($<200^{\circ}C$). Therefore, we conducted the lab- and bench-scales experiments appling the sodium chlorite powder ($NaClO_2(s)$) for the oxidation of NO to $NO_2$ and the carbon-based catalyst for the reduction of $NO_x$ and $SO_2$; the lab- and bench-scales experiments were conducted in laboratory and iron-ore sintering plant, respectively. In the lab-scale experiment, known concentrations of $NO_x$ (200 ppm), $SO_2$ (75 ppm), $H_2O$ (10%) and $NH_3$ (400 ppm) in 2.6 L/min were introduced into a packed-bed reactor containing $NaClO_2(s)$, then gases produced by the reaction with $NaClO_2(s)$ were fed into the carbon-based catalyst (space velocity = $2,000hr^{-1}$) at $130^{\circ}C$. In the bench-scale experiment, flue gases of $50Nm^3/hr$ containing 120 ppm NO and 150 ppm $SO_2$ were taken out from the duct of iron-ore sintering plant, then introduced into the flow reactor; $NaClO_2(s)$ were injected into the flow reactor using a screw feeder. Gases produced by the reaction with $NaClO_2(s)$ were introduced into the carbon-based catalyst (space velocity = $1,000hr^{-1}$). Results have shown that, in both lab- and bench-scales experiments, NO was oxidized to $NO_2$ by $NaClO_2(s)$. In addition, above 90% of $NO_x$ and $SO_2$ removal were obtained at the carbon-based catalyst. These results lead us to suggest that the combination of $NaClO_2(s)$ with the carbon-based catalyst has the potential to achieve the simultaneous removal of $NO_x$ and $SO_2$ at low temperature ($<200^{\circ}C$).