• Title/Summary/Keyword: $Na^{+}$, $K^{+}$-ATPase

Search Result 274, Processing Time 0.031 seconds

Near-Infrared Spectroscopy for Monitoring Cerebral Hemodynamics in Hyperbilirubinemia-induced Newborn Piglets (고빌리루빈혈증이 유도된 신생자돈에서 근적외석 발광기를 이용한 뇌 혈역학적 변화에 대한 연구)

  • Hwang, Jong Hee;Choi, Chang Won;Chang, Yun Sil;Park, Won Soon
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.6
    • /
    • pp.649-654
    • /
    • 2005
  • Purpose : The present study examined how changes in cerebral hemodynamics in newborn piglets with bilirubin infusion can be evaluated by near infrared sepctroscopy(NIRS). Methods : Seventeen newborn piglets were randomly divided into the following three experimental groups : six in the control group(CG); seven in the bilirubin infusion group(BG), and four in the bilirubin infusion with 7-nitroindazole group(NG). To achieve the concentration of bilirubin above 20 mg/dL, we injected a bolus of 40 mg/kg of bilirubin intravenously, followed by 30 mg/kg/hr of bilirubin continuous intravenous infusion. All groups were monitored with cerebral hemodynamics using near infrared spectroscopy(NIRS) and their brain cortexes were harvested and the activities of $Na^+$, $K^+$-ATPase, level of conjugated dienes, ATP and phosphocreatine(PCr) were determined biochemically. Results : No changes took place in CG. In BG and NG, base excess, pH, and MABP decreased, and lactate level in blood increased. Cerebral $Na^+$, $K^+$-ATPase activity and ATP, PCr level in BG significantly decreased and conjugated dienes increased compared to CG. These abnormalities observed in the BG were significantly improved in the NG. In continuous NIRS monitoring, [$HbO_2$], [HbT], and [HbD] in BG were significantlly decreased compared to CG. However these abnormalities between NG and CG were not significantly different. There were no significant differences in $ScO_2$ between the study groups. Conclusion : Our study suggests cerebral hemodynamic changes could be monitored by non-invasive NIRS in newborn piglets with bilirubin infusion.

General Pharmacological Properties of the New +/K+ ATPase Inhibitor DBM-819

  • Park, Woo-Kyu;Kong, Jae-Yang;Kim, Hyun-Jung;Lee, Dong-Ha;Lim, Hong;Cheon, Hyae-Gyeong
    • Biomolecules & Therapeutics
    • /
    • v.10 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • The effects of a newly synthesized $H^+/K^+$ ATPase inhibitor,1-(2-methyl-4-methoxypheny)-4-[(3-hy-droxypropyl)amino] -6-methyl-2,3-dihydropyrrolo (3,2-c) quinoline (DBM-819) , on the central nervous system, isolated smooth muscle, cardiovascular and digestive systems and renal function were investigated in various experimental animals. Oral administration of DBM-819 had no effect on the central nervous system except body temperature of mice slightly decreased at doses of 15 and 50 mg/kg. DBM-819 produced a moderate analgesic effect in acetic acid-induced writhing test in mice at 50 mg/kg (p.o.). In conscious rats, DBM-819 (15 and 50 mg/kg, p.o.) showed a slight increase in blood pressure and a small decrease in heart rate. DBM-819 had an significant effect on agonist-induced contraction of guinea pig ileum at $1.5{\times}10^{-5}g/ml.$ No significant effect of DBM-819 (5 and 15 mg/kg, i.p) on urinary volume or urinary excretion of $Na^+,\;K^+$ and Cl- was observed in rats. DBM-819 had no significant effect on intestinal transport of a semisolid meal in mice at 15 and 50 mg/kg (p.o.). These findings suggest that DBM-819 exerts no significant pharmacological effects on the central nervous system and renal function at 15 mg/kg (p.o.), but produces some effects on the smooth muscle and circulatory system.

The Cytotoxic Mechanisms of Bacillus thuringiensis $\delta$-endotoxin, a Bioinsecticide : Effect on $K^+$ Channel of Insect Cell Lines.

  • Seo, Young-Rok;Han, Sung-Sik;Yu, Yong-Man;Lee, Jun-Jae;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.70-70
    • /
    • 1996
  • The cytotoxicological effect of Bt 1-endotoxin, well-known as a bioinsecticide, was investigated on ion channel of insect cell lines. This study attempted to evaluted the specificity by simple experiment to measure the cell swelling using lepidopteran cell lines in isotonic solution containing only one cation. Cell swelling was stimulated in KCI-sucrose isotonic solution as well as TC-100 media containg in solubilized crystal 5-endotoxin. It suggested that the cell swelling by Bt toxin have a relation to K+ channel. The cell swelling may be due to the stimulation K+ influx and simultaneously the penetration of H2O induced by Bt toxin, because the stimulation of swelling was observed with the solubilized toxin in KCI-sucrose isotonic solution, but not in sucrose isotonic solution. Moreover the specific K+ channel blocker, such as 4-arnjnopyrimidine(4-AP) and ouabain, showed the significant effect on the cell swelling induced by Bt toxin. The increasement of the cell swelling induced by 4-AP suggested to be caused by the block of K+ efflux through K+ leak channels. The inhibition of cell swelling by ouabain, which is the well-known inhibitor of Na+, K+-ATPase, suggested to be due to decreasement of K+ influx following diminishment of Na+, K+-ATPase activities.

  • PDF

Effect of Ethanol on $Na^+-P_i$ Uptake in Opossum Kidney Cells: Role of Membrane Fluidization and Reactive Oxygen Species

  • Park, In-Ho;Hwang, Moon-Young;Woo, Jae-Suk;Jung, Jin-Sup;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.5
    • /
    • pp.529-538
    • /
    • 1999
  • This study was undertaken to examine the effect of ethanol on $Na^+ -dependent$ phosphate $(Na^+-P_i)$ uptake in opossum kidney (OK) cells, an established renal proximal tubular cell line. Ethanol inhibited ^Na^+-dependent$ component of phosphate uptake in a dose-dependent manner with $I_{50}$ of 8.4%, but it did not affect $Na^+-independent$ component. Similarly, ethanol inhibited $Na^+-dependent$ uptakes of glucose and amino acids (AIB, glycine, alanine, and leucine). Microsomal $Na^+-K^+-ATPase$ activity was not significantly altered when cells were treated with 8% ethanol. Kinetic analysis showed that ethanol increased $K_m$ without a change in $V_{max}$ of $Na^+-P_i$ uptake. Inhibitory effect of n-alcohols on $Na^+-P_i$ uptake was dependent on the length of the hydrocarbon chain, and it resulted from the binding of one molecule of alcohol, as indicated by the Hill coefficient (n) of 0.8-1.04. Catalase significantly prevented the inhibition, but superoxide dismutase and hydroxyl radical scavengers did not alter the ethanol effect. A potent antioxidant DPPD and iron chelators did not prevent the inhibition. Pyrazole, an inhibitor of alcohol dehydrogenase, did not attenuate ethanol-induced inhibition of $Na^+-P_i$ uptake, but it prevented ethanol-induced cell death. These results suggest that ethanol may inhibit $Na^+-P_i$ uptake through a direct action on the carrier protein, although the transport system is affected by alterations in the lipid environment of the membrane.

  • PDF

Effect of Ethacrynic Acid on Renal Tubular Secretion of PAH in Anesthetized Cat (고양이의 신장에서 Ethacrynic Acid가 PAH 분비에 미치는 영향)

  • Kim, Y.K.;Jung, J.S.;Kim, J.H.;Suh, D.J.;Lee, S.H.
    • The Korean Journal of Physiology
    • /
    • v.16 no.2
    • /
    • pp.177-186
    • /
    • 1982
  • The effect of ethacrynic acid (EA) on the renal secretion of PAH was examined in cat kidney. $C_{PAH}$ and $T_{PAH}$ were measured before and after infusion of EA $(0.5{\sim}50mg/kg)$ through the femoral vein. The following results were obtained: 1) In the dosage range of 0.5 to 25 mg/kg, EA increased the urine flow, and sodium and potassium excretion in dose-dependent manner, but the glomelular filtration rate was decreased as the dosage of EA was increased. 2) $C_{PAH}$ and $T_{PAH}$ were decreased by EA in the dosage range of 3 to 25 mg/kg and 1 to 50 mg/kg, respectively, in dose·dependent manner with the dosage to cause 50% inhibition of about 5 mg/kg. 3) With dosage of 0.5mg/kg, EA appeared to exert a great effect on diuretic response without the influence on $T_{PAH}$. At 10min after infusion of EA, a potent diuretic effect appeared, while $T_{PAH}$ did not show a significant change. These results suggest that the action mechanism of EA on tubular secretion of PAH may be different from that on natriuresis. 4) With dosage of 5 mg/kg, EA did not inhibit the Na-K-ATPase activity in microsomal fractions from both cortex and medulla. 5) The double reciprocal plot ($l/T_{PAH}$ versus $l/P_{PAH}$) suggested that EA inhibited the P AH secretion by a competitive pattern. However, probenecid, a prototypic inhibitor of the organic acid pump, had no influence on both the inhibitory effect of $T_{PAH}$ and the natriuretic effect by EA. These results suggest that in vivo EA altered tubular secretion of P AH through interactions with receptors that are not identical with the Na-K-ATPase.

  • PDF

The Calcium Release from Cardiac Mitochondria by Sodium and Potassium ($Na^+$$K^+$에 의한 심장근 Mitochondria에서의 $Ca^{++}$ 유리작용)

  • Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.14 no.1_2
    • /
    • pp.1-11
    • /
    • 1978
  • The $Na^+$-and $K^+$-induced $Ca^{++}$ release was measured isotopically by Milipore filter technique in mitochondria isolated from rabbit ventricles. The release of $Ca^{++}$ from mitochondria could be induced by 1-3 mM of $Na^+$ added in incubating medium under the presence of 0.5mM EGTA to prevent the released $Ca^{++}$ from rebinding with mitochondrial membrane. The amount of $Ca^{++}$ released was increased by increasing the concentration of $Na^+$ added. 100mM $K^+$, in itself, did not induce the $Ca^{++}$ release from cardiac mitochondria, the $Na^+$-induced $Ca^{++}$ release, however, was potentiated by the presence of $K^+$. The potentiation of $Na^+$-induced $Ca^{++}$ release by $K^+$ was proportional to the $Na^+/K^+$ ratio presented in the incubating medium. Among the monovalent cations other than $Na^+$, the release of $Ca^{++}$ from cardiac mitochondria was shared only by $Li^+$. The $Na^+$-induced $Ca^{++}$ release could be also observed in the mitochondria isolated from liver and kidney. However, the $Na^+$ sensitivity was somewhat lower in liver and kidney mitochondria than in heart mitochondria. The release of $Ca^{++}$ induced by $Na^+$ in the mitochondria isolated from the experimentally produced failured heart was not different from that in the normal heart mitochondria, and was not directly modified by $10^{-6}{\sim}10^{-5}$ M of Ouabain. From the experiments, it was suggested that the $Ca^{++}$ released from mitochondria by $Na^+$ could be used in excitation-contraction coupling process to initiate the contraction of the cardiac myofibrils. Futhermore, it appeared that the phenomenon of $Ca^{++}$ release from cardiac mitochondria by $Na^+$ and $K^+$ might be related to the inotropic effect of digitalis glycoside which could bring about the increase of $Na^+$ or the reduction of $K^+$ intracellulary through the inhibition of $Na^+$, $K^+$-ATPase.

  • PDF

The effect of red ginseng and ginseng leaves on the substance and energy metabolism in hypothyroidism rats

  • Xiao, Hang;Tan, Cheng;Yang, Guanlin;Dou, Deqiang
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.556-565
    • /
    • 2017
  • Background: Recent studies have revealed that the properties Traditional Chinese Medicine is mostly associated with are substance and energy metabolism. Our study aimed to compare the effect of red ginseng (RG) (warm property) and ginseng leaves (GL; cold property) on the substance and energy metabolism of rats with hypothyroidism. Materials and methods: Rats were administered propylthiouracil intraperitoneally for 20 d to cause hypothyroidism. The reference group was orally administered Aconiti Lateralis Radix Praeparaia [FZ (Fuzi in Chinese)], while both the RG and GL groups were orally administrated crude drugs. The rectal, tail, toe, and axilla temperature of the rats were assayed every 3 d. Oxygen consumption, carbon dioxide production, heat production, and energy expenditure were measured via TSE phenoMaster/LabMaster animal monitoring system. Adenosine monophosphate-activated protein kinase, $Na^+-K^+$-ATPase, fumarase, pyruvic acid and cyclic adenosine monophosphate/cyclic guanosine monophosphate were determined. Results: The lower levels of triiodothyronine, tetraiodothyronine, and thyrotropin-releasing hormone and the higher level of thyroid stimulating hormone revealed the successful establishment of a hypothyroidism model. Oxygen consumption, carbon dioxide production, heat production, and energy expenditure in the FZ and RG groups were obviously increased. The activity of $Na^+-K^+$-ATPase and fumarase in the FZ and RG groups was significantly increased. The cyclic adenosine monophosphate/cyclic guanosine monophosphate level in the FZ and RG groups was increased, while the GL group showed the opposite. Conclusion: Our research provides a new way to explore the efficiency of Chinese medicine on the basis of the relationship between drug property and effects on substance and energy metabolism.

Effect of PCMB on Organic Ion Transport in Rabbit Renal Cortical Slices (토끼 신피질 절편에서 PCMB가 유기이온의 이동에 미치는 영향)

  • Park, In-Cheol;Kim, Tae-In;Jung, Dong-Keun;Kim, Young-Keun
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.345-352
    • /
    • 1990
  • To determine the role of sulfhydryl group in transport of organic ions across the basolateral membrane of renal proximal tubules, effect of p-chloromercuribenzoic acid (PCMB) on the transport of tetraethylammonium (TEA) and p-aminohippurate (PAH) was studied in rabbit renal cortical slices. PCMB caused irreversible inhibition of TEA and PAH uptake in a dose-dependent manner, with $I_{50}$ value (concentration for 50% inhibition) of $30\;{\mu}M$ for TEA and $75\;{\mu}M$ for PAH. Kinetic analysis of TEA and PAH uptakes showed that PCMB decreased Vmax $(62.35\;vs.\;28.32\;n\;mole/g{\cdot}min\;fur\;TEA:\;385.24\;vs.\;170.36\;n\;mole/g{\cdot}min\;for\;PAH)$ without changing Km. The inhibitory action of PCMB on TEA and PAH uptakes was independent of pH of the pretreatment medium. The inhibitory effect of PCMB on the uptake of TEA or PAH was prevented by dithiothreitol, but not by the substrate. PCMB inhibited Na-K-ATPase activity in a dose-dependent manner with $I_{50}$ value of $50\;{\mu}M$, which is similar to those for TEA and PAH uptake. These results suggest that PCMB inhibits the transport of organic cations and anions in the renal basolateral membrane by directly affecting the SH-group in the transporter molecules or secondly by altering the Na-K-ATPase activity.

  • PDF

Antibacterial Activity and Inhibition of Resistance in Methicillin-resistant Staphylococcus aureus by Maneung-hwan Ethanol Extract (만응환(萬應丸) 에탄올 추출물의 메티실린 내성 포도상구균에 대한 항균활성 및 내성억제 효과)

  • Na, Yong-su;Kim, Jong-gyu;Song, Yung-sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.1
    • /
    • pp.31-45
    • /
    • 2020
  • Objectives In this study, we investigated the antimicrobial activity of a 70% ethanol extract of Maneung-hwan (MEH), which is prescribed by practitioners of oriental medicine for use against methicillin-resistant Staphylococcus aureus (MRSA). Methods The antibacterial activity of MEH against MRSA strains was evaluated using the disc diffusion method, broth microdilution method (minimal inhibitory concentration, MIC), checkerboard dilution test, and time-kill test. The mechanism of action of MEH was investigated by bacteriolysis using detergents or ATPase inhibitors Additionally, mRNA and protein expression were investigated by quantitative reverse transcription-polymerase chain reaction and western blot assay, respectively. Results The MIC of MEH was 25~1,600 ㎍/mL against all the tested bacterial strains. We showed that MEH extract exerts strong antibacterial activity. In the checkerboard dilution test, the fractional inhibitory concentration index of MEH in combination with antibiotics indicated synergism or partial synergism against S. aureus. The time-kill study indicated that the growth of the tested bacteria was considerably inhibited after a 24-h treatment with MEH and selected antibiotics. To measure the cell membrane permeability, MEH (3.9 ㎍/mL) was combined with Triton X-100 (TX) at various concentrations N,N-dicyclohexylcarbodimide (DCCD) was also tested as an ATPase inhibitor. TX and DCCD cooperation against S. aureus exhibited synergistic action. Accordingly, the antimicrobial activity of MEH in the context of cell membrane rupture and ATPase inhibition was assessed. Additionally, the expression of genes and proteins associated with resistance was reduced after exposing MRSA to MEH. Conclusions These results suggest that MEH possesses antibacterial activity and acts as a potential natural antibiotic against MRSA.

$[^3H]$ Ouabain Binding and Effect of Ouabain on $^{45}Ca^{2+}$-Uptake in Rat Cardiac Myocytes (쥐 심근 세포의 $[^3H]$ Ouabain 결합과 $^{45}Ca^{2+}}$섭취에 미치는 Ouabain의 영향)

  • 이신웅;김영희;진갑덕
    • YAKHAK HOEJI
    • /
    • v.28 no.3
    • /
    • pp.129-138
    • /
    • 1984
  • Specific [$^{3}H$] ouabain binding and $Ca^{2+}$ -uptake were measured to elucidate the role of high affinity [$^{3}H$] ouabain binding site in rat cardiac myocytes which contain 65% of rod cells. High affinity [$^{3}$H] ouabain binding site, which is about 3% of total pump sites, with apparent dissociation constant ($K_{D}$) of $1.1{\times}10^{-7}M$ and maximum binding site concentration (Bmax) of 1.2 pmol/mg protein ($1.754{\times}10^{5}cells$) were identified. At the concentration of $10^{-7}M$ to $10^{-4}M$, ouabain produced concentration dependent increase in $Ca^{2+}$-uptake of myocytes. The effect of ouabain on $Ca^{2+}$-uptake was not effected by membrane depolarization (elevated K+ in incubation medium) or verapamil. These results suggest that in rat ventricular myocytes the ouabain receptor complex to high affinity site may increase Na+ - $Ca^{2+}$ exchange across the sarcolemmal membrane by inhibition of Na+, K+ - ATPase.

  • PDF