• Title/Summary/Keyword: $Na^+/K^+$-ATPase activity

Search Result 176, Processing Time 0.024 seconds

Effects of NaOCl on Neuronal Excitability and Intracellular Calcium Concentration in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • Recent studies indicate that reactive oxygen species (ROS) can act as modulators of neuronal activity, and are critically involved in persistent pain primarily through spinal mechanisms. In this study, we investigated the effects of NaOCl, a ROS donor, on neuronal excitability and the intracellular calcium concentration ($[Ca^{2+}]_i$) in spinal substantia gelatinosa (SG) neurons. In current clamp conditions, the application of NaOCl caused a membrane depolarization, which was inhibited by pretreatment with phenyl-N-tert-buthylnitrone (PBN), a ROS scavenger. The NaOCl-induced depolarization was not blocked however by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Confocal scanning laser microscopy was used to confirm whether NaOCl increases the intracellular ROS level. ROS-induced fluorescence intensity was found to be increased during perfusion of NaOCl after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF$-DA). NaOCl-induced depolarization was not blocked by pretreatment with external $Ca^{2+}$ free solution or by the addition of nifedifine. However, when slices were pretreated with the $Ca^{2+}$ ATPase inhibitor thapsigargin, NaOCl failed to induce membrane depolarization. In a calcium imaging technique using the $Ca^{2+}$-sensitive fluorescence dye fura-2, the $[Ca^{2+}]_i$ was found to be increased by NaOCl. These results indicate that NaOCl activates the excitability of SG neurons via the modulation of the intracellular calcium concentration, and suggest that ROS induces nociception through a central sensitization.

Development of a Novel Experimental Model for Nephrotoxicity Assessment Using Membrane Vesicles of Rabbit Renal Proximal Tubules (신장근위곡세뇨관 막소포를 이용한 신장독성 실험모델 개발)

  • 이영재;이창업;이문한;성하정;류판동
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.4
    • /
    • pp.195-204
    • /
    • 1993
  • Basolateral and brush border membrane (BLM and BBM) vesicles of renal proximal tubules were prepared from adult male New Zealand White rabbits to evaluate as a potential model for assessment of nephrotoxicity. PAH uptakes using BLMV, glucose and leucine uptakes using BBMV were measured in the rabbits treated cephaloridine. In addition, urinalysis and histopathological studies were performed to investigate the correlationship with membrane vesicle uptakes. The results were as follows: (1) the activite of Na+, K+ -ATPase was enriched 12.3-fold in vasolateral memvrane vesicles (BLMV) and the specific activity of alkaline phosphatase in purified brush border memvrane vesicles (BBMV) was enriched 10.1-fold compared with each of microsomal homogenate. (2) In the uptake experiments, cephaloridine decreased initial and probenecid-sensitive PAH uptakes in BLMV. (3) Cephaloridine tested decreased initial and phlorizin-sensitive glucose uptakes in BBMV. (4) Cephaloridine tested decreased initial and Na+-dependent leucine uptakes in BBMV. (5) Cephaloridine tested significantly increased the urinary excretion of glucose and activity of ${\gamma}$-GTP. (6) Cephaloridine tested caused moderate necrotic changes in renal tubular cells and formation of urinary cast in the lumina of Henle's loop and collecting tubules besides the swelling of renal tubules.

  • PDF

Effect of Salviae Radix on Impairment of Membrane Transport Function in Rabbits with Myoglobinuric Acute Renal Failure (마이오글로빈뇨성 급성 신부전 토끼에서 신장 세포막 수송 기능 장애에 대한 단삼의 효과)

  • Ji-Cheon, Jeong;Hyun-Soo, Kim
    • The Journal of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.119-128
    • /
    • 2000
  • This study was carried out to determine if Salviae Radix extract (SRE) exerts protective effect against alterations in membrane transport function in rabbits with rhabdomyo lysis-induced acute renal failure. Acute renal failure was induced by intramuscular administration of glycerol (50%, 10 ml/kg). GFR in the glycerol-injected animals was reduced to 11% of the basal value and the fractional $Na^{+}$ excretion was increased to 7.8-fold, indicating generation of acute renal failure. When animals received SRE pretreatment for 7 days prior to glycerol injection, such changes were significantly attenuated. The fractional excretion of glucose and phosphate was increased more than 43-fold and 27-fold, respectively, in rabbits treated with glycerol alone. However, they were increased to 17-and 4.3-fold, respectively, in SRE-pretreated rabbits, and these values were significantly lower than those in rabbits treated with glycerol alone. Uptakes of glucose and phosphate in purified isolated brush-border membrane, the $Na^{+}-K^{+}-ATPase$ activity in microsomal fraction, and cellular ATP levels all were reduced in rabbits treated with glycerol alone. Such changes were prevented by SRE pretreatment. Uptakes of organic ions, PAH and TEA, in renal cortical slices were inhibited by the administration of glycerol, which was prevented by SRE pretreatment. Pretreatment of an antioxidant DPPD significantly attenuated the increase in the fractional excretion of glucose and phosphate induced by rhabdomyolysis. These results indicate that rhabdomyolysis causesimpairment inreabsorption of solutes in the proximal tubule via the generation of reactive oxygen species, and SRE pretreatment may provide the protection against the rhabdomyolysis-induced impairment by its antioxidant action.

  • PDF

Effect of N-ethylmaleimide(NEM) on $Na^+$ Transport Across the Frog Skin (N-ethylmaleimide(NEM)가 개구리 피부의 $Na^+$ 이동에 미치는 영향)

  • Song, Sun-Ok;Jung, Noh-Pal;Park, Yang-Saeng
    • The Korean Journal of Physiology
    • /
    • v.13 no.1_2
    • /
    • pp.13-22
    • /
    • 1979
  • Studies have been conducted using isolated surviving skin of Rana temporalia in an attempt to evaluate the effect of N-ethylmaleimide (NEM) on the epithelial $Na^+$ transport. Active transport of $Na^+$ across the skin was estimated by measuring short circuit current (SCC). NEM administered to the outside surface of the skin in concentration of $0.5{\times}10^{-4}-2.5{\times}10^{-4}M$ induced $20{\sim}40%$ increase during the first 30 mintues, followed by a gradual reduction in SCC. With NEM above $4{\times}10^{-4}M$, SCC was inhibited from the beginning. Qualitatively similar results were obtained when NEM was added to the inside bathing medium. However, the concentration of NEM for a similar effect was much higher with the drug in the inside bathing medium than in the outside bathing medium. The oxygen consumption of the skin was inhibited by NEM of above $10^{-4}M$, the effect being of approximately the same magnitude as that on SCC. The activity of $Na^+-K^+$ ATPase of the skin was not inhibited by NEM below $10^{-3}M$, but it was dramatically reduced with $1.2{\times}M$ NEM. The effects of NEM $(10^{-4}M)$ on the SCC and oxygen consumption could be eliminated by adding cysteine $(10^{-4}-10^{-3}M)$ in the medium, indicating that the SH group is involved in the action of NEM in the frog skin. On the basis of these results, the mode of action of NEM on the $Na^+$ transport across the frog skin was discussed.

  • PDF

Altered Vascular Calcium Regulation in Hypertension

  • Kim, Won-Jae;Lee, Jong-Un;Park, Yong-Hyun;Nam, Sang-Chae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.529-535
    • /
    • 1997
  • The present study was aimed at investigating whether the vascular calcium regulation is altered in hypertension. Two-kidney, one clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt hypertension were made in rats, and their thoracic aortae were taken 4 weeks later. The isometric contractile response and calcium uptake of the endothelium-denuded aortic preparations were determined. Caffeine ($0.1{\sim}35\;mmol/L$) induced a greater contraction in 2K1C and DOCA-salt hypertension than in normotensive control. When the vascular calcium store was functionally-depleted by a repeated exposure to caffeine, it took longer to reload the store and to resume the initial contraction force in response to caffeine in both 2K1C and DOCA-salt hypertension. The vascular $^{45}Ca$ uptake following the functional depletion of the cellular store was also greater in both models of hypertension than in control. Ryanodine, calcium channel activator of the sarcoplasmic reticulum, attenuated the restoration of caffeine-induced vascular contraction, which was not affected by either 2K1C or DOCA-salt hypertension. Nifedipine, an L-type $Ca^{2+}$ channel blocker, attenuated the restoration of caffeine-induced contraction, which was not affected by DOCA-salt hypertension, but was more pronounced in 2K1C hypertension. Nifedipine also diminished the vascular $^{45}Ca$ uptake, which was not affected by DOCA-salt hypertension, but was more pronounced in 2K1C hypertension. Ouabain, a $Na^+,\;K^+-ATPase$ inhibitor, increased the caffeine-induced contraction by a similar magnitude in control and 2K1C hypertension, which was, however, markedly attenuated in DOCA-salt hypertension. Ouabain enhanced the vascular $^{45}Ca$ uptake, the degree of which was not affected by 2K1C hypertension, but was markedly attenuated in DOCA-salt hypertension compared with that in control. Cyclopiazonic acid, a selective inhibitor of $Ca^{2+}-ATPase$ of the sarcoplasmic reticulum, attenuated the restoration of caffeine-induced contraction, which was not affected by 2K1C hypertension, but was more marked in DOCA-salt hypertension. These results suggest that the increased vascular calcium storage may be attributed to an enhanced calcium influx in 2K1C hypertension, and to an impaired $Na^+-K^+$ pump activity of the cell membrane and subsequently increased calcium pump activity of the cellular store in DOCA-salt hypertension.

  • PDF

The Effect of Salviae Radix on Oxidat-Inhibition of Phosphate Uptake in Renal Proximal Tubular Cells (단삼약침액(丹蔘藥鍼液)이 신장(腎臟) 근위세뇨관세포(近位細尿管細胞)에서 산화제(酸化劑)에 의한 인산(燐酸)의 이동억제(移動抑制)에 미치는 영향(影響))

  • Lee, Ho-Dong;Youn, Hyoun-Min;Jang, Kyung-Jeon;Song, Choon-Ho;Ahn, Chang-Beohm
    • Journal of Acupuncture Research
    • /
    • v.17 no.3
    • /
    • pp.208-218
    • /
    • 2000
  • This study was undertaken to determine if Salviae Radix (SR) exerts protective effect against oxidant-induced inhibition of phosphate uptake in renal proximal tubular cells. Membrane transport function and cell death were evaluated by measuring phosphate uptake and trypan blue exclusion, respectively, in opossum kidney (OK) cells, an established proximal tubular cell line. $H_2O_2$ was used as a model oxidant. $H_2O_2$ inhibited the phosphate uptake in a dose-dependent manner over the concentration range of 0.1-0.5 mM. Similar fashion was observed in cell death. However, the phosphate uptake was more vulnerable to $H_2O_2$ than cell death, suggesting that $H_2O_2$-induced inhibition of phosphate uptake is not totally attributed to cell death. Decreasedphosphate uptake was associated with ATP depletion and inhibition of $Na^+$-pump activity as determined by direct inhibition of $N^+-K^+$-ATPase activity. When cells were treated with $H_2O_2$ in the presence of 0.05% SR, the inhibition of phosphate uptake and cell death induced by $H_2O_2$ was significantly attenuated. SR restored ATP depletion and decreased $Na^+-K^+$-ATPase activity, and this is likely responsible for the protective effect of SR on decreased phosphate uptake. The protective effect of SR was similar to the $H_2O_2$ scavenger catalase. SR reacts directly with $H_2O_2$ to reduce the effective concentration of the oxidant. The iron chelator deferoxamine prevented the inhibition of phosphate uptake and cell death induced by $H_2O_2$, suggesting that $H_2O_2$-induced cell injury is resulted from an iron-dependent mechanism. These results indicate that SR exerts the protective effect against $H_2O_2$-induced inhibition of phosphate uptake by reacting directly with $H_2O_2$ like the $H_2O_2$scavenger enzyme catalase, in OK cells. However, the underlying mechanism remains to be explored.

  • PDF

Effect of Byakangelicin from Angelica dahurica and its Semi-synthetic Derivatives on Aldose Reductase, Galactosemic Cataracts, the Polyol Contents and $Na^{+}$, $K^{+}$-ATPase activity in Sciatic Nerves of Streptozotocin-induced Diabetic Rats.

  • Lim, Soon-Sung;Jung, Sang-Hoon;Shin, Kuk-Hyun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.184-184
    • /
    • 1998
  • Aldose reductase(AR), a rate-limiting enzyme in the polyol pathway, has been demonstrated to cause the intracellular accumulation of sorbitol or galactitol and hence to play key roles not only in the cataract formation in the lens but also in the pathogenesis of diabetic complications such as neuropathy, retinopathy and nephropathy, etc. In a series of investigations to evaluate potential AR inhibitors from medicinal plants, we have shown that some hot water extracts exhibited a significant inhibition of a significant inhibition of bovine lens AR in vitro. Among active plants, the roots of Angelica dahuria (Umbelliferae) were shown to have relatively potent AR inhibitory activity. Systematic fractionation of the ether soluble fraction monitored by bioassay led to isolation of two furanocoumarins, byakangelicin(I) and ter-O-methyl byakangelicin( II), were identified as potential AR inhibitors, their $IC_{50}$ values being 6.2 M and 2.8 M, respectively.

  • PDF

Effect of Scutellaria baicalensis Georgi Extract on Oxidant-Induced Inhibition of Organic Cation in Rabbit Renal Cortical Slices (황금약침액(黃芩藥鍼液)이 가토(家兎)의 신피질절편(腎皮質切片)에서 Oxidant로 유발된 유기양이온의 이동장애에 미치는 영향(影響))

  • Son, In-suk;Cho, Tae-sung;Kwon, Hae-yon;Jo, Mi-hyeong;Youn, Hyoun-min;Jang, Kyung-jeon;Song, Choon-ho;Abn, Chang-beohm
    • Journal of Acupuncture Research
    • /
    • v.19 no.2
    • /
    • pp.211-220
    • /
    • 2002
  • Objective : This study was undertaken to determine whether Scutellaria baicalensis Georgi extract (SbG) exerts the protective effect against oxidant-induced alterations in organic cation transport in the renal proximal tubule. Methods : Organic cation transport was estimated by examining alterations in tetraethylammonium (TEA) uptake in rabbit renal cortical slices. The slices were treated with 0.2 mM tBHP for 60 min at $37^{\circ}C$. tBl-IP caused an inhibition in TEA uptake by renal cortical slices. Such an effect was accompanied by depressed Na+-K+-ATPase activity and ATP depletion. Result : SbG prevented tBHP-induced inhibition of TEA uptake in a dose-dependent manner at the concentration ranges of 0.05-0.1%. SbG also prevented H2O2-induced reduction in TEA uptake. tBHP-induced inhibition of Na+-K+-ATPase activity and ATP depletion were significantly prevented by 0.05% SbG. Oxidants increased LDH release, which was blocked by SbG. Oxidants caused a significant increase in lipid peroxidation and its effect was prevented by SbG. Conclusion : These results suggest that SbG prevents oxidant-induced alterations in organic cation transport in rabbit renal cortical slices. Such protective effects of SbG may be attributed to inhibition of peroxidation of membrane lipid.

  • PDF

Nephrotoxicity Assessment of Cephaloridine using Rat Renal Proximal Tubule Suspension (랫트의 신장 근위곡세뇨관 현탁액을 이용한 Cephaloridine의 신장독성 평가)

  • 홍충만;장동덕;신동환;최진영;조재천;이문한
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.103-108
    • /
    • 1995
  • Rat renal proximal tubule suspension was prepared from adult male Sprague Dawley rat (250-300g) by mechanical (non-enzymatical) method and evaluated as a pontential model for mechanistic studies and early screening of nephrotoxicity, using anionic antibiotics (cephaloridine). Cephaloridine (CPL) produced an increase in LDH release into media. This release results from decrease a proximal tubule cell viability and subsequently increase the permeability of cell viability and subsequently increase the permeability of cell membrane. Since loss of intracellular potassium and ATP into media is the sign of disruption of cell membrane, especially basolateral membrane (BLM), CPL induced proximal tubule cell compromise also appear be associated with BLM, maybe $Na^+-K^+$ ATPase. Also seen was significant depression in brush border membrane (BBM) ALP activity and no significantly increase in BBM GGT activities. The inhibition of typical anion, PAH accumulation (especially, CPL 5 mM) and cation, TEA (especially, 4hours incubation) were seen dose dependently. This is because of CPL accumulation in renal proximal tubule and increase of cytotoxicity.

  • PDF

Potentiating Activity of (+)-Usnic Acid on EDTA and Sodium Azide Methicillin-resistant Staphylococcus aureus (메티실린-내성 포도상구균에 대하여 EDTA 및 Sodium Azide 병용에 의한 우스닌산 약효증대)

  • Lee, Young-Seob;Kim, Hye-Sung;Lee, Jae Won;Lee, Dae-Young;Kim, Geum-Soog;Kim, Hyoun-Wook;Noh, Geon-Min;Lee, Seung Eun;Lee, Sun Ae;Song, Ok Hee;Kwon, Dong-Yeul
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.122-127
    • /
    • 2016
  • Methicillin-Resistant Staphylococcus aureus(MRSA) is a multidrug-resistant(MDR) strain. (+)-Usnic acid(UA) is uniquely found in lichens, and is especially abundant in genera such as Usnea and Cladonia. UA has antimicrobial activity against human and plant pathogens. Therefore, UA may be a good antibacterial drug candidate for clinical development. In search of a natural products capable of inhibiting this multidrug-resistant bacteria, we have investigated the antimicrobial activity of UA against 17 different strains of the bacterium. In this study, the effects of a combination of UA and permeable agents against MRSA were investigated. For the measurement of cell wall permeability, UA with concentration of Ethylenediaminetetraacetic acid(EDTA) was used. In the other hand, Sodium azide($NaN_3$) was used as inhibitors of ATPase. Against the 17 strains, the minimum inhibitory concentrations(MICs) of UA were in the range of $7.81-31.25{\mu}g/ml$. EDTA or $NaN_3$ cooperation against MRSA showed synergistic activity on cell wall. UA and in combination with EDTA and $NaN_3$ could lead to the development of new combination antibiotics against MRSA infection.