• Title/Summary/Keyword: $Na^+$ transport

Search Result 517, Processing Time 0.027 seconds

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Numerical Simulation for Net-water Flux of the Cross-sectional area in the Nakdong River Estuary (낙동강 하구역내 사주간의 단면유량플럭스 수치모의)

  • Yoon, Han-Sam;Lee, In-Cheol;Ryu, Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.186-192
    • /
    • 2005
  • We investigated the deposition characteristics and mass transport flux estimation of the Nakdong estuary, Korea. To understand the effects of the tidal current circulation that influences estuary terrain changes, we used a 2D numerical model to map seawater circulation under three different situations, with the level of river flow being set as none or flood. The net-water flux of the cross-sectional area between sandbars (known as dung) was estimated. From our review of previous research, we know that the development of local sandbars shifted from the west to the east side of the estuary after the construction of the Nakdong River dike. Current development is occurring mostly at the Bakhap-dung near Tadea. The seawater circulation pattern over this large-scale area of tidal na is brings changes related to the quantity of the outflow from the Nakdong River. Based on the calculated results for the net-water flux of the cross-sectional area, we see very strong accumulation in local waters around Jangjiado, Bakhapdung, and Tadae under flood river flow conditions, but accumulation in local waters around Jinudo under the other states of flow. Consequently, in the Nakdong estuary, the main sensitive regions that are affected by changes in the flow of river discharge are the local waters around Jangiado, Bakhapdung, Tadae, and Jinudo.

  • PDF

Impact Analysis of Tributaries and Simulation of Water Pollution Accident Scenarios in the Water Source Section of Han River Using 3-D Hydrodynamic Model (3차원 수리모델을 이용한 한강 상수원구간 지류영향 분석 및 수질오염사고 시나리오 모의)

  • Kim, Eunjung;Park, Changmin;Na, Mijeong;Park, Hyeon;Kim, Bogsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The Han River serves as an important water resource for the city of Seoul, Korea and in the neighboring metropolitan areas. From the Paldang dam to the Jamsil submerged weir, the 4 water intake stations that are located for the Seoul metropolitan population were under review in this study. Therefore the water quality management in this section is very important to monitor, analyze and review to rule out any safety concerns. In this study, a 3-D hydrodynamic model, EFDC (Environmental Fluid Dynamics Code), was applied to the downstream of the Paldang Dam in the Han River, which is about 23 km in length, to determine issues related to water resource management. The 3-D grid was composed of 2,168 horizontal grids and three vertical layers. In this case, the hydrodynamic model was calibrated and verified with an observed average daily water surface elevation, water temperature and flow rate data for 3 years (2013~2015). The developed EFDC model proved to reproduce the hydrodynamics of the Han River well. The composition ratios of the noted incoming flows at the monitored intake stations for 3 years and their flow patterns in the river were analyzed using the validated model. It was found that the flow of the Wangsuk Stream depended on the Paldnag dam discharge, and it was noted that the composition ratios of the stream at the intake stations changed accordingly. In a word, the Wangsuk Stream moved mainly along the right bank of the Han River under the condition of a normal dam flow. As can be seen, when the dam discharge rate was low, the incidence of lateral mixing was often seen. The scenario analyses were also conducted to predict the transport of conservative pollutants as in the case of a chemical spill accident. Generally speaking, when scenarios were applied, the arrival time and concentration of pollutants at each intake station was thus predicted.

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.

Relationship between the Ancient Silk Road and High-technology Machine in Producing Kyung-Geum (고대 실크로드와 고조선 경금 제직기의 연관성 고찰)

  • Kim, Ji-Su;Na, Young-Joo
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.117-142
    • /
    • 2020
  • This study aims to look for the main transport road of the ancient Silk Road and to add to the hidden history of silk, where little is known about the weaving technology of the beautiful silk of GoJoseon. The research was through the analysis of relics of empirical data and analyzed the secondary data collected from books, papers, and photos of artifacts. The research questions are as follows: First, investigates the environment of silk production for GoJoseon KyungGeum and the correlation between ancient Silk Road and the East region. Second, examines the advanced weaving technology of KyungGeum in GoJoseon. The findings of the study are as follows: It is possible to infer the production period of silk in GoJoseon through jade silkworms from the Hongsan Dong-Yi culture of 4500 BC. KyungGeum pieces were excavated in Louran, Astana and Niya of the Xinjiang Autonomous Region and Noin-Ula of Mongolia, and the oldest KyungGeum was found in JoYang, one of the capitals of GoJoseon near Balhae Bay. KyungGeum was invented in the 11th century BCE here. It became the brocade and damask of the West, which were delivered through steppe road before the 5~6th century BCE. The production of KyungGeum was possible through the advanced loom which is GoJoseon's horizontal square 'Jewharu' loom combined with a high level of weaving skill. This can't be made through the slant loom of China nor vertical loom of the West Asia. Based on these results, it is suggested to continue the research on the history of ancient silkroad.

An emprical analysis on the effect of OTT company's content investment (OTT 사업자 콘텐츠 투자가 미치는 영향에 대한 실증 분석)

  • Kwak, Jeongho;Na, Hoseoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.149-156
    • /
    • 2021
  • OTT service, which allows video content to be viewed as a streaming service on the Internet network, has recently attracted a lot of attention, and the number of users is also increasing rapidly. It would be a natural strategy for OTT companies to acquire more content to gain a competitive advantage in relations with traditional media companies and other OTT companies. However, there are research results to show that the investment in facilities by Internet service providers who must transport the increasing Internet traffic from OTT provider to end users should increase as the amount of Internet traffic originated by OTT services also increases. This study empirically analyzed how content investment by Netflix, a leading OTT company, affects its revenue growth and network investment by Internet service providers through a polynomial distributed lag model. And the analysis results show that Netflix's content investment contributes to the company's increase in revenue, and also has an effect on the increase in network investment by Internet service providers. This result confirms that OTT operators' content acquisition strategy is a valid management strategy, and empirically supports the study results that OTT operators need to share the cost of Internet network facility investment.

Dead Layer Thickness and Geometry Optimization of HPGe Detector Based on Monte Carlo Simulation

  • Suah Yu;Na Hye Kwon;Young Jae Jang;Byungchae Lee;Jihyun Yu;Dong-Wook Kim;Gyu-Seok Cho;Kum-Bae Kim;Geun Beom Kim;Cheol Ha Baek;Sang Hyoun Choi
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.129-135
    • /
    • 2022
  • Purpose: A full-energy-peak (FEP) efficiency correction is required through a Monte Carlo simulation for accurate radioactivity measurement, considering the geometrical characteristics of the detector and the sample. However, a relative deviation (RD) occurs between the measurement and calculation efficiencies when modeling using the data provided by the manufacturers due to the randomly generated dead layer. This study aims to optimize the structure of the detector by determining the dead layer thickness based on Monte Carlo simulation. Methods: The high-purity germanium (HPGe) detector used in this study was a coaxial p-type GC2518 model, and a certified reference material (CRM) was used to measure the FEP efficiency. Using the MC N-Particle Transport Code (MCNP) code, the FEP efficiency was calculated by increasing the thickness of the outer and inner dead layer in proportion to the thickness of the electrode. Results: As the thickness of the outer and inner dead layer increased by 0.1 mm and 0.1 ㎛, the efficiency difference decreased by 2.43% on average up to 1.0 mm and 1.0 ㎛ and increased by 1.86% thereafter. Therefore, the structure of the detector was optimized by determining 1.0 mm and 1.0 ㎛ as thickness of the dead layer. Conclusions: The effect of the dead layer on the FEP efficiency was evaluated, and an excellent agreement between the measured and calculated efficiencies was confirmed with RDs of less than 4%. It suggests that the optimized HPGe detector can be used to measure the accurate radioactivity using in dismantling and disposing medical linear accelerators.

Analysis of Cloud Seeding Case Experiment in Connection with Republic of Korea Air Force Transport and KMA/NIMS Atmospheric Research Aircrafts (공군수송기와 기상항공기를 연계한 인공강우 사례실험 분석)

  • Yun-Kyu Lim;Ki-Ho Chang;Yonghun Ro;Jung Mo Ku;Sanghee Chae;Hae-Jung Koo;Min-Hoo Kim;Dong-Oh Park;Woonseon Jung;Kwangjae Lee;Sun Hee Kim;Joo Wan Cha;Yong Hee Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.12
    • /
    • pp.899-914
    • /
    • 2023
  • Various seeding materials for cloud seeding are being used, and sodium chloride powder is one of them, which is commonly used. This study analyzed the experimental results of multi-aircraft cloud seeding in connection with Republic of Korea Air Force (CN235) and KMA/NIMS(Korea Meteorological Administration/National Institute of Meteorological Sciences) Atmospheric Research Aircraft. Powdered sodium chloride was used in CN235 for the first time in South Korea. The analysis of the cloud particle size distributions and radar reflectivity before and after cloud seeding showed that the growth efficiency of powdery seeding material in the cloud is slightly higher than that of hygroscopic flare composition in the distribution of number concentrations by cloud aerosol particle diameter (10 ~ 1000 ㎛). Considering the radar reflectivity, precipitation, and numerical model simulation, the enhanced precipitation due to cloud seeding was calculated to be a maximum of 3.7 mm for 6 hours. The simulated seeding effect area was about 3,695 km2, which corresponds to 13,634,550 tons of water. In the precipitation component analysis, as a direct verification method, the ion equivalent concentrations (Na+, Cl-, Ca2+) of the seeding material at the Bukgangneung site were found to be about 1000 times higher than those of other non-affected areas between about 1 and 2 hours after seeding. This study suggests the possibility of continuous multi-aircraft cloud seeding experiments to accumulate and increase the amount of precipitation enhancement.

Electrode Characteristics of K+ Ion-Selective PVC Membrane Electrodes with AC Impedance Spectrum (AC 임피던스 분석법을 이용한 K+ 이온선택성 PVC막 전극 특성)

  • Kim, Yong-Ryul;An, Hyung-Hwan;Kang, An-Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.870-877
    • /
    • 1998
  • With impedance spectrum measurements, impedance was studied in the interface between sample solutions for $K^+-ion$ selective PVC membrane electrode containing neutral carriers [dibenzo-18-crown-6 (D18Cr6) and valinomycine (Val)]. Response characteristics of electrode were examined by measuring AC impedance spectra that were resulted from the chemical structure and the content of carrier, variation of plasticizer, membrane thickness, doping of base electrolytes, and concentration variation of sample solution. Transport characteristics of PVC membrane electrode were also studied. It was found that the equivalent circuit for the membrane in $K^+$ solution could be expressed by a series combination of solution resistance and a parallel circuit consisting of the bulk resistance and geometric capacitance of the membrane system. But the charge transfer resistance and Warburg resistance were overlapped a little in the low concentration and low frequency ranges. The carrier, D18Cr6 was best for electrode and impedance characteristics, and ideal electrode characteristics were appeared especially in case of doping of the base electrolyte[potassium tetraphenylborate(TPB)]. The optimum carrier content was about 3.23 wt% in case of D18Cr6 and Val. DBP was best as a plasticizer. As membrane thickness decreased the impedance characteristics was improved, but electrode characteristics were lowered for membrane thickness below the optimum. In the case of D18Cr6, the selectivity coefficients by the mixed solution method for the $K^+$ ion were the order of $NH_4{^+}>Ca^{2+}>Mg^{2+}>Na^+$.

  • PDF

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.