• Title/Summary/Keyword: $Na^+$ Ion Removal Capacity

Search Result 58, Processing Time 0.02 seconds

Fluoride Sorption Property of Lanthanum Hydroxide (란탄수산화물의 불소 흡착 특성)

  • Kim, Jung-Hwan;Park, Hyun-Ju;Jung, Kyung-Hun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.714-721
    • /
    • 2010
  • This research was undertaken to evaluate the feasibility of lanthanum hydroxide for fluoride removal from aqueous solutions. A batch sorption experiments were conducted to study the influence of various factors such as pH, contact time, initial fluoride concentration and temperature on the sorption of fluoride on lanthanum hydroxide. The optimum fluoride removal was observed in the $pH_{eq}{\leq}8.8$. Sorption equilibrium of fluoride on lanthanum hydroxide was better described by the Freundlish isotherm model than by the Langmuir isotherm model. The adsorption energy obtained from D-R model was 9.21 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The pseudo-second-order kinetic model described well the experimental kinetic data. Thermodynamic parameters such as ${\Delta}Go^{\circ}$, ${\Delta}H^{\circ}$ and ${\Delta}S^{\circ}$ indicated that the nature of fluoride sorption is spontaneous and endothermic. The used lanthanum hydroxide could be regenerated by washing with NaOH solution. Also, the results applied to real ground water indicate that fluoride selectivity and removal capacity of lanthanum hydroxide were superior to those of PA anion-exchange resin.

Study of Utilization of Natural Zeolites as Functional Materials for Water Purification (II): Adsorption Properties of Heavy Metal Ions by Domestic Zeolites (천연 제올라이트의 수환경 개선용 기능성 소재로의 활용에 관한 연구 (II): 국내산 제올라이트의 중금속 이온 흡착 특성)

    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.201-213
    • /
    • 2003
  • The adsorption property and ability of domestic zeolites for some heavy metal ions (Ag, Pb, Cr, Cu, Zn, Mn), which may cause a serious environmental problem in industrial wastewater, were evaluated on ore unit through a series of adsorption experiments together with careful examinations of mineral composition and properties of the zeolites. Though the adsorption behavior basically took place in the form of a cation exchange reaction, the higher CEC value does not necessarily to imply the higher adsorption capacity for a specific heavy metal. A general trend of the adsorption selectivity for heavy metals in the zeolites is determined to be as follow: $Ag\geq$Pb>Cr,Cu$\geq$Zn>Mn, but the adsorption properties of heavy metal ions somewhat depend on the species and composition of zeolite. Clinoptilolite tends to adsorb selectively Cu in case of Cr and Cu, whereas heulandite prefers Cr to Cu. A dominant adsorption selectivity of the zeolite ores for Ag and Pb is generally conspicuous regardless of their zeolite species and composition. The zeolite ores exhibit a preferential adsorption especially for $Ag^{+}$ so as not to regenerate when treated with $Na^{+}$ . In the adsorption capacity for heavy meta ions, the zeolites differ in great depending on their species: ferrierite>clinoptilolite>heulandite. Considering the CEC value of mordenite, the mordenite-rich ore appears to be similar to the clinoptilolite ore in the adsorption capacity. The adsorption capacity for heavy metals is not positively proportional to the CEC values of the zeolites measured by the exchange reaction with ammonium ion. In addition, the adsorption capacity roughly tends to depend on the zeolite contents, i.e., the grade of zeolite ore, but the trend is not consistent at all in some ores. These may be caused by the adsorption selectivity for some specific heavy metals, the presence of possible stacking micro-faults and natural cations such as K hardly to exchange in the zeolite. Considering the economic availability and functional effectiveness as natural zeolite resources, clinoptilolite ores could be applicable to utilize the domestic zeolites for the removal of heavy metals.

Physicochemical Properties and Cu Sorption of the Biochar Derived from Woody Biomass (목질계 바이오매스에서 생산된 바이오차의 물리화학적 특성 및 Cu 흡착제거 특성)

  • Park, Yi-Kyung;Yang, Jae-Kyu;Na, Jung-Kyun;Jung, Jong-Am;Jung, Hyung-Jin;Kang, Chang-Hwan;Ko, Kyung-Min;Kim, Wan-Hee;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2012
  • In this study, the adsorption of $Cu^{2+}$ from aqueous solution by the biochar derived from woody biomass at different pyrolysis temperatures has been investigated. The woody biomass wastes used in this study were branch of willow ($Salix$ $koreensis$ $Andersson$) and bark of chestnut ($Castanea$ $crenata$ $var.$ $dulcis$). Three biochar samples prepared by heating each biomass at temperature of $300^{\circ}C$, $500^{\circ}C$, and $700^{\circ}C$were tested for the adsorption capacity of Cu. Also the physicochemical properties of the developed biochars were studied using different characterization techniques such as FT-IR, SEM, BET surface area, and cation exchange capacity (CEC). The adsorption of Cu could be well described by Langmuir model for both willow and chestnut biochars with $R^2{\geq}0.98$. The maximum adsorption capacities of the biochar produced at $700^{\circ}C$ from the Langmuir equation were found to be 12.5 mg $g^{-1}$ and 16.9 mg $g^{-1}$ for willow and chestnut, respectively. Chestnut biochar was found to interact more effectively with the active sites available for Cu, resulting higher removal of Cu(II) than wiloow biochar. Ion exchange and surface complexation found to be the main mechanisms involved in the adsorption process. This study demonstrated the feasibility of the biochars derived from woody biomass to be as a low-cost potential adsorbent for heavy metals as Cu(II) removal in aquatic system.

Characterization of Natural Zeolite and Study of Adsorption Properties of Heavy Metal Ions for Development of Zeolite Mine (제올라이트 광산개발을 위한 천연 제올라이트의 특성 분석 및 중금속 이온 흡착 특성 연구)

  • Kim, Hu Sik;Kim, Young Hun;Baek, Ki Tae;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.299-308
    • /
    • 2015
  • The six natural zeolites collected in Pohang area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are modenite, albite, and quarts in Kuryongpo-A (Ku-A), Kuryongpo-B (Ku-B), Kuryongpo-C (Ku-C), Donghae-A (Dh-A), Donghae-B (Dh-B), and Donghae-C (Dh-C) samples. The XRF analysis showed that the six zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo-C (Ku-C) zeolite was the highest compared to other zeolites. The capabilities of removing heavy metal ions such as $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ were compared. The effect of reaction time in removing heavy metal ions was studied. The experimental results showed that the efficiency of removal was low for $Pb^{2+}$, $Cd^{2+}$ and $Cu^{2+}$ ions. These may be caused by the low content of zeolite in the six natural zeolites. This indicates that the adsorption capacity roughly tends to depend on the zeoite contents, ie., the grade of zeolite ore.

Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater

  • Jun, Byung-Moon;Jang, Min;Park, Chang Min;Han, Jonghun;Yoon, Yeomin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1201-1207
    • /
    • 2020
  • This study explored whether MXene (Ti3C2Tx) could remove radioactive Cs+ from model nuclear wastewater. Various adsorption tests were performed and the physical aspects of the interaction were investigated. We varied the MXene dosage, Cs+ initial concentration, solution pH, solution temperature and exposure time. MXene adsorption exhibited very fast kinetics, based on the fact that equilibrium was achieved within 1 h. MXene exhibited an outstanding adsorption capacity (148 mg g-1) at adsorbent and adsorbate concentrations of 5 and 2 mg L-1, respectively, at neutral pH condition (i.e., pH 7). We explored Cs+ adsorption by MXene in the presence of four different ions (NaCl, KCl, CaCl2 and MgCl2) and three different organic acids (sodium oleate, oxalic acid, and citric acid). The Cs+ removal rate changed in the presence of these components; adsorption of Cs+ by MXene thus involved ion exchange, supported by both Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. We confirmed that MXene was re-usable for at least four cycles. MXene is cost-effective and practical when used to adsorb radionuclides (e.g., Cs+) in nuclear wastewater.

Synthesis of Amino-type Anion Exchanger from Acrylic Acid Grafted Polypropylene Nonwoven Fabric and Its Ion-Exchange Property (아크릴산 그라프트 폴리프로필렌 부직포로부터 아민형 음이온 교환체의 합성 및 이온교환특성(I))

  • Park, Hyun-Ju;Na, Choon-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.527-534
    • /
    • 2006
  • The purpose of this study is the development of more effective filter-type polymer adsorbent for removal of anionic pollutants from wastewater. In order to synthesize the polymer adsorbent that possesses anionic exchangeable function, carboxyl(-COOH) group of PP-g-AA nonwoven fabric was converted into amine($-NH_2$) group by the chemical modification using diethylene triamine(DETA). FT-IR data indicate that amine group was introduced into PP-g-AA through amidation of grafted acrylic acid by reaction with DETA. The degree of amination increased with increase in the reaction time and temperature of the chemical modification process, and was significantly improved by the pre-swelling treatment of PP-g-AA with solvent and addition of metal chlorides as a catalyst in following order as $NH_4OH>MeOH{\geq}HCl{\geq}H_2O\;and\;AlCl_3>FeCl_3{\geq}SnCl_2{\gg}ZnCl_2{\geq}FeCl_2$, respectively. However, the addition of catalyst limited the reusability of DETA, hence was less useful from the viewpoint of cost effectiveness and waste management. The anion exchange capacity of the aminated PP-g-AA(PP-g-AA-Am) increased with increase in the degree of amination, but it reached maximum value at the degree of amination as about $50{\sim}60%$. The anion exchange capacity of PP-g-AA-Am was higher than those of commercial anion resins.

Characterization of Natural Zeolite for Removal of Radioactive Nuclides (방사성 핵종 제거를 위한 천연 제올라이트 특성 연구)

  • Kim, Hu Sik;Park, Won Kwang;Lee, Ha Young;Park, Jong Sam;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.41-51
    • /
    • 2014
  • The four natural zeolites collected in Pohang and Gyeongju area, Kyungsangbuk-do, Korea, were characterized by XRD, XRF, DTA, TGA, and CEC analysis. The primary species of these zeolite are heulandite, modenite, illite, and illite in Kuryongpo (Ku), Pohang (Po), Yangbuk-A (Ya-A), and Yangbuk-B (Ya-B) samples. The XRF analysis showed that the four zeolites contain Si, Al, Na, K, Mg, Ca, and Fe. Cation exchange capacity of Kuryongpo (Ku) zeolite was the highest compared to other zeolites. The adsorption capacities of Cs and Sr in the four natural zeolites were compared at $25^{\circ}C$. On the basis of adsorption data Langmuir and Freundlich adsorption isotherm model were confirmed. The equilibrium process was descried well by Langmuir isotherm model. This study shows that Ya-A zeolite is the most efficient for the $Cs^+$ and $Sr^{2+}$ ion adsorption compared to the other natural zeolites.

MODULATION OF INTRACELLULAR pH BY $Na^+/H^+$ EXCHANGER AND $HCO_3^-$ TRANSPORTER IN SALIVARY ACINAR CELLS ($Na^+/H^+$ exchanger와 $HCO_3^-$ transporter에 의한 흰쥐 타액선 선세포내 pH 조절)

  • Park, Dong-Bum;Seo, Jeong-Taeg;Sohn, Heung-Kyu;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.352-367
    • /
    • 1998
  • Intracellular pH (pHi) plays an important role in the regulation of cellular processes by influencing the acitivity of various enzymes in cells. Therefore, almost every type of mammalian cell possesses an ability to regulate its pHi. One of the most prominent mechanisms in the regulation of pHi is $Na^+/H^+$ exchanger. This exchanger has been known to be activated when cells are stimulated by the binding of agonist to the muscarinic receptors. Therefore, the aims of this study were to compare the rates of $H^+$ extrusion through $Na^+/H^+$ exchanger before and during muscarinic stimulation and to investigate the possible existence of $HCO_3^-$ transporter which is responsible for the continuous supply of $HCO_3^-$ ion to saliva. Acinar cells were isolated from the rat mandibular salivary glands and loaded with pH-sensitive fluoroprobe, 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF), for 30min at room temperature. Cells were attached onto the coverglass in the perfusion chamber and the changes in pHi were measured on the iverted microscope using spectrofluorometer. 1. By switching the perfusate from $HCO_3^-$-free to $HCO_3^-$-buffered solution, pHi decreased by $0.39{\pm}0.02$ pH units followed by a slow increase at an initial rate of $0.04{\pm}0.007$ pH units/min. The rate of pHi increase was reduced to $0.01{\pm}0.002$ pH units/min by the simultaneous addition of 1 mM amiloride and $100{\mu}M$ DIDS. 2. An addition and removal of $NH_4^+$ caused a decrease in pHi which was followed by an increase in pHi. The increase of pHi was almost completely blocked by 1mM amiloride in $HCO_3^-$-free perfusate which implied that the pHi increase was entired dependent on the activation of $Na^+/H^+$ exchanger in $HCO_3^-$-free condition. 3. An addition of $10{\mu}M$ carbachol increased the initial rate of pHi recovery from $0.16{\pm}0.01$ pH units/min to $0.28{\pm}0.03pH$ units/min. 4. The initial rate of pHi decrease induced by 1mM amiloride was also increased by the exposure of the acinar cells to $10{\mu}M$ carbachol ($0.06{\pm}0.008pH$ unit/min) compared with that obtained before carbachol stimulation ($0.03{\pm}0.004pH$ unit/min). 5. The intracellular buffering capacity ${\beta}1$ was $14.31{\pm}1.82$ at pHi 7.2-7.4 and ${\beta}1$ increased as pHi decreased. 6. The rate of $H^+$ extrusion through $Na^+/H^+$ exchanger was greatly enhanced by the stimulation of the cells with $10{\mu}M$ carbachol and there was an alkaline shift in the activity of the exchanger. 7. An intrusion mechanism of $HCO_3^-$ was identified in rat mandibular salivary acinar cells. Taken all together, I observed 3-fold increase in $Na^+/H^+$ exchanger by the stimulation of the acinar cells with $10{\mu}M$ carbachol at pH 7.25. In addition, I have found an additional mechanism for the regulation of pHi which transported $HCO_3^-$ into the cells.

  • PDF