• Title/Summary/Keyword: $Na^+$ channel

Search Result 431, Processing Time 0.031 seconds

Determination of $Na^+$ Channel Blocker in Seaweed (해조류 내 $Na^+$ 챈널 차단 생리활성물질의 측정)

  • 유종수;천병수;김남길
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.107-112
    • /
    • 2001
  • A tissue biosensor was developed for the continuous determination of $Na^+$ channel blockers. The proposed sensor was applied to the determination of Na+ channel blockers in seaweed. It was found that $Na^+$ channel blocker content displayed seasonal variation; it was high from February to April and decreased thereafter (May - August). From these results the present proposed method may be used for high sensitive determination of $Na^+$ channel blockers contained in the seaweed organisms and environments. Therefore, it may be important to monitor $Na^+$ channel blocker content of seaweed throughout the year.

  • PDF

Tissue Biosensor for Determination of $Na^{+}$ Channel Blocker in Chinese Drug and Seaweed (Porphyra yezoensis Ueda) (조직 센서를 이용한 한약재료 및 해조류의 $Na^{+}$ 챈널 차단물질 측정)

  • 천병수;류종수;검목건;도범열생
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 1998
  • Tissue biosensor for mearsuring sodium channel blockers, such tetrodotoxin(TTX), saxitoxin (STX) and paralytic shellfish poisoning(PSP) consisted of frog bladder membrane, and $Na^{+}$ electrode. The proposed biosensor was applied to determine Chinese drug and dry or wet Porphyra yezonesis $Na^{+}$ channel blockers below the detection limit of the standard mouse bio-assay while the observed detection limit didn't cause human poisoning. The proposed biosensor system may be used for future $Na^{+}$ channel blockers monitoring within the marine environment.

  • PDF

Network-Coded Bi-Directional Relaying Over an Asymmetric Channel (비대칭 채널에서의 네트워크 코딩 기반 양방향 릴레이 전송 기법)

  • Ryu, Hyun-Seok;Lee, Jun-Seok;Kang, Chung G.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.3
    • /
    • pp.172-179
    • /
    • 2013
  • In this paper, we consider network-coded bi-directional relaying (NCBR) schemes over an asymmetric channel, in which bi-directional links have the different channel quality, as well as the asymmetric traffic load. In order to deal with asymmetric nature, two different types of NCBR schemes are considered: network coding after padding (NaP) and network coding after fragmentation (NaF). Even if NaP has been known as only a useful means of dealing with the asymmetry in traffic load up to now, our analysis shows that its gain can be significantly lost by the asymmetry in channel quality, under the given bit error performance constraint. Furthermore, it is shown that NaF always outperforms NaP, as well as traditional bi-directional relaying scheme.

고려 인삼의 효능은 생체막 이온 채널 조절과 연관되어 있다는 증거들에 대하여

  • Na, Seung-Yeol
    • Bulletin of Food Technology
    • /
    • v.18 no.2
    • /
    • pp.52-58
    • /
    • 2005
  • 최근 20여년 동안 Panax ginseng의 다양한 효과가 연구 되어져 왔다. Panax ginseng의 주요 활성 성분인 ginsenosides는 오직 인삼에서만 발견되어지는 saponin이다. 최근 들어 신경, 非신경 또는 복합적으로 분포된 세포에서 ginsenoside가 $Ca^2+$, $K^+$,$Na^+$,$Cl^-$ channel이나 ligand gated ionchannel (5-HT3, nicotinic acetylcholine, NMDA receptor)과 같은 다양한 ion channel을 조절하는증거들이 발표되고 있다. Ginsenoside는 voltage-dependent $Ca^2+$, $K^+$,$Na^+$ channel의 활성을 억제하는 반면 $Ca^2+$-activated $Cl^-$ channel이나 $Ca^2+$-activated $K^+$ channel의 활성은 증가 시키는 것으로 나타났다. 또한 흥분성 ligand-gated ion channel인 $5-HT_3$, nicotinic acetylcholine, NMDA receptor의 활성은 억제한다. 본 총설에서는 현재까지 알려진 ion channel 활성에 대한 ginsenoside의 조절작용과 이것으로 인해 어떻게 생물학적 효능과 연결이 되어있는지에 대하여 이야기하고자 한다.

  • PDF

Xenopus Oocyte의 $K^{+}$ Channel에 관한 연구

  • 채수완
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.160-160
    • /
    • 1993
  • 목적: Guinea pig heart의 ATP sensitive $K^{+}$ channel xenopus oocyte에 발현시켜 연구하고져 본 실험을 행하였다. 실험방법: 기니픽 심장으로부터 ,RNA를 분리하여 50ng/$\mu$l의 농도로 50nl를 xenopusdp 주입하였다. Xenpus oocyte에서 conventional electrode를 이용 막전휘를 측정하였고, pH selective 미세전극으로 세포내 pH를 측정하였다. 막전위에 미치는 potassium channel opener, blocker, KCN의 작용을 관찰하였다. 결과: 기니픽 심장 mRNA를 주입하거나 주입하지 않은 xenopus oocyte에서 $K^{+}$channel opener인 cromakalin, RP49356등은 과분극을 일으키지 못하였다. 그러나 세포내 ATP 감소제인 KCN은 농도 의존적으로 과분극을 일으켰으나 ,glibenclamide에 의해 차단되는 않았다. mRNA를 주입한 oocyte에서 Na-H 자극제인 NH$_4$Cl은 pH 변동을 일으켜 NA-H exchange를 expression 시켰다. 결론: Xenopus oocyte는 cromakalin등에 의해 open되는 $K^{+}$channel 은 없었고, 기니픽 심근의 ATP sensitive $K^{+}$channel로 expression 되지 않았으나 Na-H exchange 는 expression 됨을 알 수 있었다. KCN으로 open 되는 $K^{+}$channel이 있었으나 glibenclamide에는 차단되지 않는 channel이였다.

  • PDF

Tramadol as a Voltage-Gated Sodium Channel Blocker of Peripheral Sodium Channels Nav1.7 and Nav1.5

  • Chan-Su, Bok;Ryeong-Eun, Kim;Yong-Yeon, Cho;Jin-Sung, Choi
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.168-175
    • /
    • 2023
  • Tramadol is an opioid analog used to treat chronic and acute pain. Intradermal injections of tramadol at hundreds of millimoles have been shown to produce a local anesthetic effect. We used the whole-cell patch-clamp technique in this study to investigate whether tramadol blocks the sodium current in HEK293 cells, which stably express the pain threshold sodium channel Nav1.7 or the cardiac sodium channel Nav1.5. The half-maximal inhibitory concentration of tramadol was 0.73 mM for Nav1.7 and 0.43 mM for Nav1.5 at a holding potential of -100 mV. The blocking effects of tramadol were completely reversible. Tramadol shifted the steady-state inactivation curves of Nav1.7 and Nav1.5 toward hyperpolarization. Tramadol also slowed the recovery rate from the inactivation of Nav1.7 and Nav1.5 and induced stronger use-dependent inhibition. Because the mean plasma concentration of tramadol upon oral administration is lower than its mean blocking concentration of sodium channels in this study, it is unlikely that tramadol in plasma will have an analgesic effect by blocking Nav1.7 or show cardiotoxicity by blocking Nav1.5. However, tramadol could act as a local anesthetic when used at a concentration of several hundred millimoles by intradermal injection and as an antiarrhythmic when injected intravenously at a similar dose, as does lidocaine.

Application of the H Infinity Control Principle to the Sodium Ion Selective Gating Channel on Biological Excitable Membranes

  • Hirayama, Hirohumi
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-38
    • /
    • 2004
  • We proposed the infinity control principle to evaluate the Biological function. The H infinity control was applied to the Sodium (Na) ion selective gating channel on the excitable cellular membrane of the neural system. The channel opening, closing and inactivation processes were expressed by movements of three gates and one inactivation blocking particle in the channel pore. The rate constants of the channel state transition were set to be voltage dependent. The temporal changes in amounts per unit membrane area of the channel states were expressed by means of eight differential equations. The biochemical mimetic used to complete the Na ion selective channel was regarded as noise. The control inputs for ejecting the blocking particle with plugging in the channel pore were set for the active transition from inactivated states to a closed or open state. By applying the H infinity control, we computed temporal changes in the channel states, observers, control inputs and the worst case noises. The present paper will be available for evaluating the noise filtering function of the biological signal transmission system.

Amiloride-sensitive $Na^+$ Channels Are Not Involved in the Cardiovascular Responses to Increased $Na^+$ Concentration in Cerebrospinal Fluid (뇌척수액내 $Na^+$ 농도 증가에 의한 심혈관 반응과 Amiloride 민감성 $Na^+$ Channel과의 관계)

  • Kook, Hyun;Kim, Jae-Ha;Baek, Yung-Hong
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.3
    • /
    • pp.313-319
    • /
    • 1994
  • This study was undertaken to investigate the relationship between the $Na^+$ channels of the cardiovascular regulation center and the responses to increased $Na^+$ concentration in the cerebrospinal fluid (CSF), by observing the effects of icv administration of the agents affecting $Na^+$ transport. Icv infusion of $200\;{\mu}l$ of 1 M NaCl produced hypertension and bradycardia in the urethane-anesthetized rabbit, and the bradycardia was inhibited and reversed to tachycardia by vagotomy. Amiloride, a $Na^+$ transport inhibitor, produced hypertension and bradycardia, which were not altered by vagotomy, and it did not affect the NaCl-induced responses. Benzamil, a derivative of amiloride with higher specificity, neither produced any cardiovascular effects by itself, nor affected the NaCl-induced responses. In vagotomized rabbits, icv amiloride reversed the NaCl-induced tachycardia to a bradycardia, but the bradycardiac effect was not altered by pretreating with NaCl. This study showed that although amiloride and benzamil slightly differ in their cardiovascular action, neither of them did affect the NaCl-induced responses. We suggest that the $Na^+$ channels which are sensitive to amiloride or benzamil in the cardiovascular regulation center are not involved in the NaCl-induced response.

  • PDF

Two-Photon-Resonant Three-Photon Ionization of Na Atom (Na 원자의 2광자 공명 3광자 이온화)

  • 이종훈;노시표;김중복;김기식;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • We studied two-photon-resonant three-photon ionization processes via 4D[channel #1] and 5S(channel #2] intermediate state of Na atom in a quartz ionization cell. For each channel. the bandwidth of ionization spectrum increased linearly with laser intensity and the ionization signal followed J3 dependence at low intensity. Compared with channel # 1 . ionization signal of channel #2 was enhanced by a factor of 20 - 25. The measured AC Stark shift factor of 3S - 4I) transition was $174\pm60MHz/MW/textrm{cm}^2$..

  • PDF

Identification of Chloride Channels in Hamster Eggs (햄스터 난자에서 존재하는 Chloride 통로)

  • Kim, Y.-M.;Kim, J.-S.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.101-112
    • /
    • 2004
  • Chloride($Cl^-$) channels play critical roles in cell homeostasis and its specific functions such as volume regulation, differentiation, secretion, and membrane stabilization. The presence of these channels have been reported in all kinds of cells and even in frog oocytes. These essential role of $Cl^-$­ channels in cell homeostasis possibly play any role in egg homeostasis and in the early stage of development, however, there has been no report about the presence of $Cl^-$­ channel in the mammalian oocyte. This study was performed to elucidate the presence of $Cl^-$­ channels in hamster eggs. When allowing only $Cl^-$­ to pass through the channel of the egg membrane by using impermeant cation such as N-methyl-D-glucamine(NMDG), single channel currents were recorded. These channel currents showed typical long-lasted openings interrupted by rapid flickering. Mean open $time({\tau}o)$ was 43${\pm}$10.14 ms(n=9, at 50 mV). The open probability(Po) was decrease with depolarization. The current-voltage relation showed outward rectification. Outward slop conductance(32${\pm}$5.4 pS, n=22) was steeper than the inward slop conductance(10${\pm}$1.3 pS). Under the condition of symmetrical 140 mM NaCl, single channel currents were reversed at 0 mV(n=4). This reversal potential(Erev) was shifted from 0 mV at 140 mM concentration of internal NaCl(140 mM [Na+]i) to ­9.8${\pm}$0.5 mV(n=4) at 70 mM [Na+]i and 11.5${\pm}$1.9 mV at 280 mM [Na+]i(n=4) respectively, strongly suggesting that these are single $Cl^-$­ channel currents. To examine further whether this channel has pharmacological property of the $Cl^-$­ channel, specific Cl­ channel blockers, IAA-94(Indanyloxyacetic acid-94) and DIDS(4, 4'-diisothiocyan ostillben- 2-2'disulfonic acid) were applied. IAA-94 inhibited the channel current in a dose-dependent manner and revealed a rapid and flickering block. From these electrophysiological and pharmacological resluts, we found the novel $Cl^-$­ channel present in the hamster oocyte membrane. The first identification of $Cl^-$­ channel in the hamster oocyte may give a clue for the further study on the function of $Cl^-$­ channel in the fertilization and cell differentiation.