• Title/Summary/Keyword: $N_2$ flow rate

Search Result 843, Processing Time 0.031 seconds

Effect of $N_2$ flow rate on properties of GaN thin films ($N_2$ flow rate가 GaN 박막의 특성에 미치는 영향)

  • 허광수;박민철;명재민
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.66-69
    • /
    • 2001
  • Effect of $N_2$ flow rate on properties of GaN thin films grown by plasma-enhanced molecular beam epitaxy(PEMBE) was discussed to optimize the quality of thin films. It was found that at low $N_2$ flow rate indicating high III/V flux ratio, the growth rate of GaN thin films was controlled by $N_2$ flux, and at high $N_2$ flow rate the growth rate was not controlled by $N_2$ flux any longer. It was also found that III/V flux ratio affected film quality. The film grown at higher $N_2$ flow rate showed low background carrier concentration, higher carrier mobility, and narrow FWHM in band-edge emission of low temperature PL. It is thought that the film in more Ga flux region was grown by 2-dimensional layer-by-layer growth mode, and the film in more nitrogen region was grown by 3-D island growth mode. All samples exhibited a good crystallinity.

  • PDF

Transition temperatures and upper critical fields of NbN thin films fabricated at room temperature

  • Hwang, T.J.;Kim, D.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.3
    • /
    • pp.9-12
    • /
    • 2015
  • NbN thin films were deposited on thermally oxidized Si substrate at room temperature by using reactive magnetron sputtering in an $Ar-N_2$ gas mixture. Total sputtering gas pressure was fixed while varying $N_2$ flow rate from 1.4 sccm to 2.9 sccm. X-ray diffraction pattern analysis revealed dominant NbN(200) orientation in the low $N_2$ flow rate but emerging of (111) orientation with diminishing (200) orientation at higher flow rate. The dependences of the superconducting properties on the $N_2$ gas flow rate were investigated. All the NbN thin films showed a small negative temperature coefficient of resistance with resistivity ratio between 300 K and 20 K in the range from 0.98 to 0.89 as the $N_2$ flow rate is increased. Transition temperature showed non-monotonic dependence on $N_2$ flow rate reaching as high as 11.12 K determined by the mid-point temperature of the transition with transition width of 0.3 K. On the other hand, the upper critical field showed roughly linear increase with $N_2$ flow rate up to 2.7 sccm. The highest upper critical field extrapolated to 0 K was 17.4 T with corresponding coherence length of 4.3 nm. Our results are discussed with the granular nature of NbN thin films.

PECVD 공정에 의해 제작된 SION박막 특성 분석

  • Jeong, Jae-Uk;Chu, Seong-Jung;Park, Jeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.123-124
    • /
    • 2011
  • 플라즈마 화학적 기상 증착(plasma enhanced chemical vapor deposition)공정 중 NH3 gas flow rate, RF power, SiH4 gas flow rate을 고정시키고 N2O gas flow rate을 0 sccm부터 250 sccm까지 변화시키는 조건 하에 SiON박막을 증착한 후 그 투과율, 굴절률을 측정하고 분석하였다. N2O gas flow rate조건별 시편들은 증착율을 계산하여 350 nm 두께로 동일하게 SiON을 증착하였고, borofloat위에 SiON을 증착한 샘플은 투과율을, 실리콘기판 위에 SiON을 증착한 샘플로는 굴절률을 측정하였다. 투과율의 경우는 UV/Vis spectrometer를 이용해 633 nm, 1550 nm 두 가지 파장 대 모두에서 N2O gas flow rate이 가장 큰 250 sccm일 때 가장 높은 것을 알 수 있었고 N2O gas flow rate이 낮아질수록 투과율 또한 작아지는 경향을 보였다. 굴절률은 ellipsometer를 이용해 측정하였으며 633 nm 파장에서 N2O gas flow rate가 가장 낮은 0 sccm일 때 굴절률이 가장 큰 값을 가지고 N2O gas flow rate이 커질수록 굴절률은 지수함수적으로 감소되었다(n=1.837~1.494). 이는 N2O gas flow rate이 낮을수록 SiN계열에 커질수록 SiO2계열에 가까워지는 현상으로 이해된다. 이러한 실험분석 결과는 향후 실리카 도파로의 설계 및 최적화를 위해 사용될 수 있다.

  • PDF

Effect of N2 flow rate on growth and photoluminescence properties of GaN nanorods grown by using molecular beam epitaxy (분자선 에피택시를 이용하여 GaN 나노로드를 성장시 구조 및 광학적인 특성에 미치는 N2의 양의 효과)

  • Park, Y.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.298-304
    • /
    • 2007
  • We have studied the effect of $N_2$ flow rate on the structural and optical properties of GaN nanorods grown on (111) Si substrates by radio-frequency plasma-assisted molecular-beam epitaxy. The hexagonal shape nanorods with lateral diameters from 80 to 190 nm with increasing $N_2$ flow rate from 1.1 to 2.0 sccm are obtained. However, the ratio of length (thickness) and compact region increases with increasing $N_2$ flow rate up to 1.7 sccm and then saturate. From the photoluminescence, free exciton transition is clearly observed for GaN nanorods with low $N_2$ flow rate. And the PL peak energies are blue-shifted with decreasing diameter of the GaN nanorods due to size effect. Temperature-dependent photoluminescence spectra for the nanorods with $N_2$ flow rate of 1.7 sccm show an abnormal behavior like "S-shape" with increasing temperature.

Environmental Changes of the Rivers in Taegu Area after a Heavy Rain (대구지방 하천의 집중 강우후의 수계환경의 변화)

  • Lyu, Seung-Won;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.6 no.2
    • /
    • pp.81-89
    • /
    • 1983
  • The change of environmental factors with flow rates were studied quantitatively for two rivers, the Nakdong River and the Sin stream, which have different basins in ecosystem structures, during short period after a heavy rain. In the Nakdong River, transparency, DO, alkalinity and hardness were negatively correlated with the flow rate by logarithmic function, but the concentration of SiO2 was relatively constant regardless of the flow chage. In the Sin stream, transparency, alkalinity, hardness and the concentration of NH3-N, NO2-N and SO4= showed negative correlation with the flow rate by logarithmic function. The ratios of maximum to minimum values for aquatic environmental factors during the samller than that for flow rate in the respective rivers (28 in the Nakdong R.; 50 in the Sin S.). Immediately after the heavy rain, the concentrations of NO2-N, NH3-N and PO4-P in the Sin stream were 8, 6 and 1 times as high as those in the Nakdong River, respectively, but in the stable flow state, those became 94, 25 and more than 10 times, respectively. The load for most of the dissolved environmental constituents changed similarly to the flow rate in both rivers. It is notable that, at the stable flow state, the loads for NH3-N (59g/sec) and NO2-N (3.3g/sec) in the Sin stream were 4.3 and 1.3 times as high as those in the Nakdong River.

  • PDF

Properties of AlSi etching using the MERIE type reactor (MERIE형 반응로를 이용한 AlSi의 식각 특성)

  • 김창일;김태형;장의구
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.188-195
    • /
    • 1996
  • The AlSi etching process using the MERIE type reactor carried out with different process parameters such as C1$_{2}$ and N$_{2}$ gas flow rate, RF power and chamber pressure. The etching characteristics were evaluated in terms of etch rate, selectivity, uniformity and etched profile. As the N2 gas flow rate is increased, the AlSi etch rate is decreased and uniformity has remained constant within .+-.5%. The etch rate is increased and uniformity is decreased, according to increment of the C1$_{2}$ gas flow rate, RF power and chamber pressure. Selective etching of TEOS with respect to AlSi is decreased as the RF power is increased while it is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, on the other hand, selective etching of photoresist with respect to AlSi is increased by increment of the C1$_{2}$ gas flow rate and chamber pressure, it is decreased as the N$_{2}$ gas flow rate is increased.

  • PDF

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.

Composition and interface quality control of AlGaN/GaN heterostructure and their 2DEG transport properties

  • Kee, Bong;Kim, H.J.;Na, H.S.;Kwon, S.Y.;Lim, S.K.;Yoon, Eui-Joon
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.4 no.3
    • /
    • pp.81-85
    • /
    • 2000
  • The effects of $NH_3$ flow rate and reactor pressure on Al composition and the interface of AlGaN/GaN heterostructure were studied. Equilibrium partial pressure of Ga and Al over AiGaN alloy was calculated as a function of growth pressure, $NH_3$flow rate and temperature. It was found equilbrium vapor pressure of Al is significantly lower than that of Ga, thus, the alloy composition mainly controlled by Ga partial pressure. We believe that more decomposition of Ga occur at lower $NH_3$ flow rate and higher growth pressure leads to preferred Al incorporation into AlGaN. The alloy composition gradient became larger at AlGaN/GaN heterointerface at higher reactor pressures, higher Al composition and low $NH_3$ flow rate. This composition gradient lowered sheet carrier concentration and electron mobility as well. We obtained an AlGaN/GaN heterostructure with sheet carrier density of ${\sim}2{\times}10^{13}cm^{-2}$ and mobility of 1250 and 5000 $cm^2$/Vs at 300 K and 100 K, respectively.

  • PDF

The Chemical Vapor Deposition of TiN on Cemented Tungsten Carbide Cutting Tools (초연합금절단공구상에 TiN의 화학증착피막에 관한 연구)

  • 이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.15 no.3
    • /
    • pp.138-145
    • /
    • 1982
  • The effects of the simultaneous variations of the ratio of feed gases(H2/N2 Flow ratio), feed gas flow rate (H2/N2, total-flow rate) and partial pressures of TiCl4 (PTiCl41) as well as deposition time and cobalt content of the substrate on the deposition rate of the TiN Coated Cemented Tungsten Carbide Tools were investigated. Deposition was carried out in the temperature range of 930$^{\circ}C$-1080$^{\circ}C$ and an activation energy of 46.5 Kcal/mole can be calculated. Transverse rupture strength was noticeably reduced by the TiN coating on the virgin surfa-ce of Cemented Tungsten Carbide, the extent of which was decreased according to the coa-ting thickness. Microhardness value observed on the work was in the range of 1700∼2000kg/mm, which were in well agreement with the value of bult TiN. The wear resistance of TiN layers was performed by turning test and it was observed that crater and flank resistance remarkably enhanced by TiN coating.

  • PDF

Effect of $N_2$ and $O_2$ Properties of STS304 Stainless Steel Films Synthesized by Unbalanced Magnetron Sputtering Process (비대칭 마그네트론 스퍼터링법에 의해 합성된 STR304 스테인리스강 박막에서의 질소와 산소의 첨가 효가)

  • 김광석;이상율;김범석;한전건
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2001
  • N- or O-doped STS304 stainless films were synthesized by an unbalanced magnetron sputtering process with various argon and reactive gas ($N_2$, $O_2$) mixtures. These films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and Knoop microhardness tester. The Results from X-ray diffraction (XRD) analysis showed that a STS304 stainless steel film synthesized without reactive gas using a bulk STS304 stainless steel target had a ferrite bcc structure ($\alpha$ phase), while the N-doped STS304 stainless film was consisted of a nitrogen supersaturated fcc structure, which hsa a strong ${\gamma}$(200) phase. In the O-doped films, oxide Phases ($Fe_2$$O_3$ and $Cr_2$$O_3$) were observed from the films synthesized under an excess $O_2$ flow rate of 9sccm. AES analysis showed that nitrogen content in N-doped films increased as the nitrogen flow rate increased. Approximately 43 at.%N in the N-doped film was measured using a nitrogen flow rate of 8sccm. In O-doped film, approximately 15 at.%O was detected using a $O_2$ flow rate of 12sccm. the Knoop microhardness value of N-doped film using a nitrogen flow rate of 8 sccm was measured to be approximately $H_{ k}$ 1200 and this high value could be attributed to the fine grain size and increased residual stress in the N-doped film.

  • PDF