• Title/Summary/Keyword: $NO_x$ gas

Search Result 562, Processing Time 0.03 seconds

The Effect of Plasma on Hydrophilic Surface Modification of LDPE (저밀도 폴리에틸렌의 친수성 표면개질에 미치는 플라즈마의 영향)

  • Hwang, Seung-No;Jeon, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.383-387
    • /
    • 1998
  • The effect of hydrophilic surface modification of low density polyethylene(LDPE) byt the plasma gas($O_2$, $N_2$, and $O_2/N_2$) was investigated from the point of view of the functionalities of the generated LDPE surfaces and the contact angle. By virtue of x-ray photoelectron spectra(XPS) and attenuated total reflectance(FT-IR ATR) analysis, the LDPE surfaces treated with plasma were generated with oxygen functionalities of carbonyl, carboxyl, and the like, nitrogen functionalities by nitrogen plasma and mixing of nitrogen and oxygen plasma treatment were identified with. It was found that nitrogen plasma treatment showed with minimum value at contact angle for rf-power and treatment time, we had obtained optimum condition for hydrophilic surface modification at composite parameter, [(W/FM)t] 520~550GJs/kg.

  • PDF

Combustion and Emission Characteristics of Biodiesel Blended Fuel by EGR Rate in a 4-cylinder CRDI Diesel Engine (4실린더 커먼레일 디젤엔진에서 바이오디젤 혼합연료와 EGR율에 따른 연소 및 배기특성)

  • Jeong, Kyu-Soo;Lee, Dong-Gon;Youn, In-Mo;Roh, Hyun-Gu;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.130-136
    • /
    • 2011
  • This study describes the effect of EGR rate on the combustion and emissions characteristics of a four cylinder CRDI diesel engine using biodiesel (soybean oil) blended diesel fuel. The test fuel is composed of 30% biodiesel and 70% ULSD (ultra low sulfur diesel) by volumetric ratio. The experiment of engine emissions and performance characteristics were performed under the various EGR rates. The experimental results showed that ignition delay was extended, the maximum combustion pressure and heat release gradually were decreased with increasing EGR rate. Comparing biodiesel blended fuel to ULSD, the injection quantity of biodiesel blended fuel was further increased than ULSD. The emission results showed that $NO_x$ emission of biodiesel blended fuel becomes higher according to the increase of EGR rate. However, in the case of biodiesel blended fuel, HC, CO and soot emissions were decreased compared to ULSD.

NOx removal of Mn-Cu-TiO2 catalyst for the calcination and oxygen concentration conditions (소성 및 산소농도 조건에 대한 Mn-Cu-TiO2 촉매의 탈질 특성)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.900-905
    • /
    • 2015
  • DeNOx catalysts composed of Mn, Cu and $TiO_2$ were prepared and tested for $NH_3$-SCR. The performance of each catalyst was studied for the NOx removal efficiency while changing the calcination temperature, reaction time, and oxygen concentration. The hydrogen conversion efficiency of a calcined catalyst was measured at the $H_2$-TPR system. The change in the specific surface area of catalyst according to the calcination temperature was analyzed. As a result, the proper calcination temperature was approximately $300^{\circ}C$. If the calcination temperature is increased to $500^{\circ}C$, the NOx removal efficiency of Mn and Cu constituents is largely decreased at the low temperature range. Oxygen in flue gas is an important parameter in the SCR reaction and optimal oxygen concentration is approximately 8 vol.%.

The separation of arsenic metabolites in urine by high performance liquid chromatography-inductively coupled plasma-mass spectrometry

  • Chung, Jin-Yong;Lim, Hyoun-Ju;Kim, Young-Jin;Song, Ki-Hoon;Kim, Byoung-Gwon;Hong, Young-Seoub
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.18.1-18.9
    • /
    • 2014
  • Objectives The purpose of this study was to determine a separation method for each arsenic metabolite in urine by using a high performance liquid chromatography (HPLC)-inductively coupled plasma-mass spectrometer (ICP-MS). Methods Separation of the arsenic metabolites was conducted in urine by using a polymeric anion-exchange (Hamilton PRP X-100, $4.6mm{\times}150mm$, $5{\mu}m$) column on Agilent Technologies 1260 Infinity LC system coupled to Agilent Technologies 7700 series ICP/MS equipment using argon as the plasma gas. Results All five important arsenic metabolites in urine were separated within 16 minutes in the order of arsenobetaine, arsenite, dimethylarsinate, monomethylarsonate and arsenate with detection limits ranging from 0.15 to $0.27{\mu}g/L$ ($40{\mu}L$ injection). We used G-EQUAS No. 52, the German external quality assessment scheme and standard reference material 2669, National Institute of Standard and Technology, to validate our analyses. Conclusions The method for separation of arsenic metabolites in urine was established by using HPLC-ICP-MS. This method contributes to the evaluation of arsenic exposure, health effect assessment and other bio-monitoring studies for arsenic exposure in South Korea.

Effects of L-tryptophan, Fructan, and Casein on Reducing Ammonia, Hydrogen Sulfide, and Skatole in Fermented Swine Manure

  • Sheng, Q.K.;Yang, Z.J.;Zhao, H.B.;Wang, X.L.;Guo, J.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1202-1208
    • /
    • 2015
  • The effects of daily dietary Bacillus subtilis (Bs), and adding L-tryptophan, fructan, or casein to fecal fermentation broths were investigated as means to reduce the production of noxious gas during manure fermentation caused by ammonia, hydrogen sulfide ($H_2S$), and 3-methylindole (skatole). Eighty swine ($50.0{\pm}0.5kg$) were equally apportioned to an experimental group given Bs in daily feed, or a control group without Bs. After 6 weeks, fresh manure was collected from both groups for fermentation studies using a $3{\times}3$ orthogonal array, in which tryptophan, casein, and fructan were added at various concentrations. After fermentation, the ammonia, $H_2S$, L-tryptophan, skatole, and microflora were measured. In both groups, L-tryptophan was the principle additive increasing skatole production, with significant correlation (r = 0.9992). L-tryptophan had no effect on the production of ammonia, $H_2S$, or skatole in animals fed Bs. In both groups, fructan was the principle additive that reduced $H_2S$ production (r = 0.9981). Fructan and Bs significantly interacted in $H_2S$ production (p = 0.014). Casein was the principle additive affecting the concentration of ammonia, only in the control group. Casein and Bs significantly interacted in ammonia production (p = 0.039). The predominant bacteria were Bacillus spp. CWBI B1434 (26%) in the control group, and Streptococcus alactolyticus AF201899 (36%) in the experimental group. In summary, daily dietary Bs reduced ammonia production during fecal fermentation. Lessening L-tryptophan and increasing fructan in the fermentation broth reduced skatole and $H_2S$.

Meat Quality of Lambs Fed on Palm Kernel Meal, a By-product of Biodiesel Production

  • Ribeiro, R.D.X.;Oliveira, Ronaldo Lopes;Macome, F.M.;Bagaldo, A.R.;Silva, M.C.A.;Ribeiro, C.V.D.M.;Carvalho, G.G.P.;Lanna, D.P.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1399-1406
    • /
    • 2011
  • This study aimed to establish the optimum level of palm kernel meal in the diet of Santa Ines lambs based on the sensorial characteristics and fatty acid profile of the meat. We used 32 lambs with a starting age of 4 to 6 months and mean weight of $22{\pm}2.75kg$, kept in individual stalls. The animals were fed with Tifton-85 hay and a concentrate mixed with 0.0, 6.5, 13.0 or 19.5% of palm kernel meal based on the dry mass of the complete diet. These levels formed the treatments. Confinement lasted 80 days and on the last day the animals were fasted and slaughtered. After slaughter, carcasses were weighed and sectioned longitudinally, along the median line, into two antimeres. Half-carcasses were then sliced between the 12th and 13th ribs to collect the loin (longissimus dorsi), which was used to determine the sensorial characteristics and fatty acid profile of the meat. For sensorial evaluation, samples of meat were given to 54 judges who evaluated the tenderness, juiciness, appearance, aroma and flavor of the meat using a hedonic scale. Fatty acids were determined by gas chromatography. The addition of palm kernel meal to the diet had no effect on the sensorial characteristics of meat juiciness, appearance, aroma or flavor. However, tenderness showed a quadratic relationship with the addition of the meal to the diet. The concentration of fatty acids C12:0, C14:0 and C16:0 increased with the addition of palm kernel meal, as did the sum of medium-chain fatty acids and the atherogenicity index. Up to of 19.5% of the diet of Santa Ines lambs can be made up of palm kernel meal without causing significant changes in sensorial characteristics. However, the fatty acid profile of the meat was altered.

Study on Combustion Characteristics with Fuel Injection Timing in a RI-CNG Engine (RI-CNG 엔진에서 연료 분사시기에 따른 연소특성에 관한 연구)

  • Park, J.S.;Ha, D.H.;Yeum, J.K.;Ha, J.Y.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.5-11
    • /
    • 2008
  • The RI gasoline engine haying a sub-chamber had a high cycle variation due to the difficulty of the residual gas scavenge in the sub-chamber. To solve this problem and improve the combustion performance of RI engine, we devised a method to inject directly CNG fuel into the sub-chamber. A DI diesel engine of single cylinder was converted into a RI-CNG engine and an electronic control unit for the engine was manufactured. In this study, the combustion characteristics of the RI-CNG engine were investigated with the injection timings and air excess ratios at the load conditions of 50% throttle open rate and 1700rpm. As the results from this study, the RI-CNG engine worked reliably under the condition of the ignitable lean limit of $\lambda=1.7$ by showing the $COV_{imep}$ below about 5%. And the highest thermal efficiency could be obtained in the injection timing that produced the high imep and the low $COV_{imep}$ at the same time. The CO emission concentration indicated very low values and the THC and $NO_x$ showed an opposite pattern. With a view to improving the thermal efficiency and reducing the harmful emissions, the proper control region of the ignition timing and the mixture ratio were nearly ATDC $20^{\circ}\sim50^{\circ}$ and $\lambda=1.4$ respectively.

  • PDF

Estimation on the Emission Reduction of SULEV LPG Vehicles (SULEV LPG 자동차의 배출가스 저감효과 평가)

  • Park, Jun-Hong;Lee, Jong-Tae;Kim, Sun-Moon;Kim, Jeong-Soo;Kang, Dae-Il;Lim, Yun-Sung;Han, Bo-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.68-76
    • /
    • 2012
  • SULEV (Super Ultra Low Emission Vehicle) which is one of the emission standards in Fleet Average System introduced to Korea from 2009 is known as the most severe standard to achieve with internal combustion engine. Considering low sales volume of hybrid vehicles in Korea, vehicle manufacturers are required to develop SULEV technologies for conventional gasoline and LPG vehicles to meet the future Fleet Average standard. In this study, the comparison of emissions has been made between SULEV developed and ULEV LPG vehicles mainly produced in this time. To estimate the emission reduction of SULEV vehicles, CVS-75 and NIER test modes have been used. CVS-75 has been used for emission certification of gasoline and LPG vehicles. NIER modes cover various average vehicle speed and reflect Korean real driving patterns better than CVS-75. The test results show that SULEV LPG vehicles have very high potential to reduce $NO_x$ in regulated emissions, $N_2O$ in green house gases and toluene in VOCs. However, SULEV LPG vehicles don't affect much on the reduction of CO and total green house gases.

Development of Photo-Fenton Method for Gaseous Peroxides Determination and Field Observations in Gwangju, South Korea

  • Chang, Won-Il;Shim, Jae-Bum;Hong, Sang-Bum;Lee, Jai H.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.16-28
    • /
    • 2007
  • An improved method was developed to determine gas-phase hydrogen peroxide($H_2O_2$) and organic hydro-peroxides (ROOH) in real-time, The analytical system for $H_2O_2$ is based on formation of hydroxybenzoic acid (OHBA), a strong fluorescent compound. OHBA is formed by a sequence of reactions, photoreduction of Fe(III)-EDTA to Fe(II)-EDTA, the Fenton reaction of Fe(II)-EDTA with $H_2O_2$, and hydroxylation of benzoic acid. By use of this analytical method rather than a previous similar method, Fenton reaction time was reduced from 2 min. to 30s. Air samples were collected by a surfaceless inlet to prevent inlet line losses. With a special arrangement of the sampling apparatus, sample delivery time was drastically reduced from ${\sim}5\;min\;to\;{\sim}20\;s$. The automated system was found to be sensitive, capable of continuous monitoring, and affordable to operate. A comparison of this method with a well-established one showed an excellent linear correlation, validating applicability of this technique to $H_2O_2$ determination. The system was applied to field measurements conducted during summertime of 2004 in Gwangju, South Korea. $H_2O_2$ was found to be a predominant species of peroxides. The diurnal variation of $H_2O_2$ displayed the maximum in early afternoon and the broad minimum throughout night. $H_2O_2$ was correlated positively with ozone, photochemical age, and temperature, however, negatively with $NO_x$ and relative humidity.

Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions

  • Lin, M.;Schaefer, D.M.;Guo, W.S.;Ren, L.P.;Meng, Q.X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • The objectives were to compare the ability of various rumen microbial fractions to reduce nitrate and to assess the effect of nitrate on in vitro fermentation characteristics. Physical and chemical methods were used to differentiate the rumen microbial population into the following fractions: whole rumen fluid (WRF), protozoa (Pr), bacteria (Ba), and fungi (Fu). The three nitrogen substrate treatments were as follows: no supplemental nitrogen source, nitrate or urea, with the latter two being isonitrogenous additions. The results showed that during 24 h incubation, WRF, Pr and Ba fractions had an ability to reduce nitrate, and the rate of nitrate disappearance for the Pr fraction was similar to the WRF fraction, while the Ba fraction needed an adaptation period of 12 h before rapid nitrate disappearance. The WRF fraction had the greatest methane ($CH_4$) production and the Pr fraction had the greatest prevailing $H_2$ concentration (p<0.05). Compared to the urea treatment, nitrate diminished net gas and $CH_4$ production during incubation (p<0.05), and ammonia-N ($NH_3$-N) concentration (p<0.01). Nitrate also increased acetate, decreased propionate and decreased butyrate molar proportions (p<0.05). The Pr fraction had the highest acetate to propionate ratio (p<0.05). The Pr fraction as well as the Ba fraction appears to have an important role in nitrate reduction. Nitrate did not consistently alter total VFA concentration, but it did shift the VFA profile to higher acetate, lower propionate and lower butyrate molar proportions, consistent with less $CH_4$ production by all microbial fractions.