• Title/Summary/Keyword: $NO_3-N:NH_4-N$ ratio

Search Result 208, Processing Time 0.031 seconds

Seasonal Mineral Nutrient Absorption Characteristics and Development of Optimum Nutrient Solution for Rose Substrate Culture in a Closed Hydroponic System (순환식 수경재배에서 재배시기별 장미의 무기이온 흡수특성과 적정 배양액 조성)

  • Yang, Eun-Young;Park, Keum-Soon;Oh, Jeong-Sim;Lee, Hye-Jin;Lee, Yong-Beom;Lee, Ju-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.354-362
    • /
    • 2009
  • This study was performed to develop a suitable nutrient solution for standard rose substrate culture in a closed hydroponic system. 1/4, 1/2, 2/3 and 1 strength of the nutrient solution made by Japan National Institute of Vegetable and Tea Science (JNIVT) were supplied. The photosynthesis rate, quality and growth of cut flower were higher in the 1/2 and 2/3 strength of nutrient solution during high and low temperature period. Based on the above results, optimum nutrient solutions (UOS) were composed by nutrientwater (n/w) absorption ratio with 1/2S ($NO_{3^-}N$ 6.8, $NH_{4^-}N$ 0.7, $PO_{4^-}P$ 2.0, K 3.8, Ca 3.0, Mg 1.2, $SO_{4^-}S$ $1.2me{\cdot}L^{-1}$) at high temperature season and 2/3($NO_{3^-}N$ 9.7, $NH_{4^-}N$ 0.8, $PO_{4^-}P$ 2.2, K 5.0, Ca 3.9, Mg 1.5, $SO_{4^-}S$ $1.5me{\cdot}L^{-1}$) at low temperature season. The results of suitability examination showed that the EC level in newly composed nutrient solution (UOS) was more stable than other nutrient solutions due to its large amount of calcium and potassium. The growth of cut flower cultivated with UOS was higher than those of other nutrient solutions. Especially, the yield of cut flowers in UOS nutrient solution increased 1.4 times than that of other nutrient solution treatments. Consequently, the new nutrient solution investigated in this experiment was suitable for rose cultivation in a closed hydroponic system.

Substrate Quality Effects on Decomposition of Three Livestock Manure Composts with Similar Stability Degree in an Acid Loamy Soil

  • Lim, Sang-Sun;Jung, Jae-Woon;Choi, Woo-Jung;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.527-533
    • /
    • 2011
  • Decomposition of compost applied to soils is affected basically by its biological stability; but, many other chemical properties of the compost may also influence compost organic-C mineralization. This study was conducted to investigate the principal substrate quality factors of composts that determine C mineralization of compost with similar stability degree (SD). Three composts samples with similar SD but different chemical properties such as pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ were mixed with an acid loamy soil and $CO_2$ emission was monitored during the laboratory incubation for 100 days. Temporal pattern of cumulative compost organic-C mineralization expressed as % of total organic C ($C_{%\;TOC}$) followed double exponential first order kinetics model and the $C_{%\;TOC}$ ranged from 4.8 to 11.8% at the end of incubation. The pattern of C%TOC among the composts was not coincident with the SD pattern (40.1 to 58.6%) of the composts; e.g. compost with the lowest SD resulted in the least $C_{%\;TOC}$ and vice versa. This result indicates that SD of compost can not serve as a concrete predictor of compost mineralization as SD is subject not only to maturity of compost but also to characteristics of co-composting materials such as rice hull (low SD) and sawdust (high SD). Meanwhile, such pattern of $C_{%\;TOC}$ collaborated with pH, C/N, $K_2SO_4$-extractable C, and molar ratio of $NH_4^+$ to $NO_3^-$ of the composts that are regarded as chemical indices of the progress of composting. Therefore, for better prediction of compost mineralization in soils, it is necessary to consider both SD and other chemical indices (pH, C/N, and molar ratio of $NH_4^+$ to $NO_3^-$).

Changes of Nitrifying Bacteria in the Different Zone (Upper·Mid·Lower Part) of the Nak-Dong River (낙동강 상·중·하 수역에서의 질화세균군의 변화)

  • Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.214-220
    • /
    • 2008
  • Nitrifying bacteria were detected by fluorescent in situ hybridization (FISH) method at 6 sampling sites with different eutrophication degree in the Nak-Dong River and their tributaries. And conventional physico-chemical parameters including $NH_4-N$, $NO_3-N$, and TN were determined concurrently. In rainy period (July), there was no noticeable difference between the number of ammonia/nitrite-oxidizing bacteria detected at each site except Sang-Ju and the ratio of nitrifying bacteria to total counts stained by DAPI varied in 6~33%. By contrast, in the dry period (October), both of bacterial population was increased differently and the ratio of nitrifying bacteria to total counts ranged more widely from 6% in heavily polluted water zone, Hwa-Won to 60% in upper tributary with high agricultural land use. Byung-Sung-Chun. In January, the numbers of ammonia-oxidizing bacteria was reduced up to one tenth, while those of nitrite-oxidizing bacteria was apparently increased maybe due to high DO and low DOC.

Physicochemical Properties of Organic Liquid Fertilizer with Oil Cake and Rice Bran as Affected by Microorganism and the Ratio of Molasses

  • An, Nan-Hee;Kim, Yong-Ki;Cho, Jung-Rai;Jee, Hyeong-Jin;Lee, Byung-Mo;Yoon, Jong-Chul;Choi, Ji-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.579-584
    • /
    • 2013
  • The study was conducted to investigate changes in the characteristics of inorganic components during fermenting process of organic liquid fertilizers according to the type and ratio of microorganism and the amount of molasses when producing organic liquid fertilizers using sesame oil cake and rice bran. To select appropriate microorganisms, liquid fertilizers were produced through a 90-day fermentation process by adding mag-ggeo-li, yogurt, dried yeast, and leaf mold. The pH in liquid fertilizer was decreased, and then increased in all microorganism samples except the mag-ggeo-li sample. The EC was rapidly increased in all samples until the $10^{th}$ days after production, and showed no changes after the $60^{th}$ days in dried yeast and after the $30^{th}$ days in the other samples. The concentration of $NH_4$-N was generally increased with time. The concentration of $P_2O_5$ was rapidly increased until the $10^{th}$ days after production and was maintained at about 1% regardless of the type of microorganism. In terms of the characteristics of liquid fertilizers according to the ratio of selected dried yeast, the pH was decreased until the $30^{th}$ days after producing the liquid fertilizers, and then was increased regardless of the ratio of dried yeast. The EC was increased with time and showed no differences depending on the amount of dried yeast. The concentration of $NH_4$-N was increased with time and in proportion to the amount of dried yeast. In terms of the characteristics of liquid fertilizers according to the ratio of molasses, the pH was decreased with increasing the molasses. The EC and concentration of $P_2O_5$ were no differences according to the amount of molasses. When 3% molasses was added, the content of $NH_4$-N was 2.6 mg $L^{-1}$ at the beginning and was at 3,025 mg $L^{-1}$ on the $90^{th}$ days.

Temporal Variations of Sea Water Environment and Nutrients in the East Coast of Korea in 2013~2017: Sokcho, Jukbyeon and Gampo Coastal Areas (2013~2017년 동해 연안의 해양환경과 영양염의 시간적 변동 : 속초, 죽변, 감포 연안)

  • Kwon, Kee-Young;Shim, Jeong Hee;Shim, Jeong-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.457-467
    • /
    • 2019
  • To investigate the long-term variation characteristics of nutrients in the east coast of Korea, water temperature, salinity, dissolved oxygen, and nutrients were measured at three stations of Sokcho, Jukbyeon and Gampo coasts for five years from 2013 to 2017. For five years, the water temperature of the East Sea coast was in the range of $1.2{\sim}28.8^{\circ}C$, the salinity was in the range of 30.63~34.79 and the dissolved oxygen (DO) was in the range of 3.53~7.64 mL/L. Distribution and variation of the water environment factors in the study area were determined by the vertical stratification of water column and distribution of water temperature. The high DO concentration in Sokcho coast From 2015 to August 2016 is presumed to be the result of the southward inflow of North Korean Cold Water (NKCW). Concentrations of dissolved inorganic nitrogen (DIN, $NH_4-N+NO_2-N+NO_3-N$) ranged $0.11{\sim}24.19{\mu}M$, phosphate concentration ranged $0.01{\sim}1.75{\mu}M$, and silicate ranged $0.17{\sim}32.80{\mu}M$. The N:P ratio was in the range of 0.7~54.3 (mean 15.2) and the N:P slope was in the range of 11.67~13.75. The N:P ratios in this study were lower than the Redfield ratio (16), indicating that nitrate did act as a limiting factor in phytoplankton growth. The correlation ($R^2$) of total N:P ratio was as high as 0.95, indicating that the effect of the surrounding land or non-point sources was not significant. In conclusion, the spatial and temporal variation of nutrients in the east coast of Korea was determined by the vertical mixing of water mass with thermocline and mainly affected by physical factors such as influx of external water masses and coastal upwelling, and the influences from inflows from the land were minimal.

Evaluation of Oxic Denitrification in A2O Fixed Biofilm System through Mass Balance (물질수지를 이용한 A2O 고정생물막법에서의 호기탈질평가)

  • Yoon, Cho-Hee;Park, Seung-Hwan;Lee, Sang-Hoon;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.231-239
    • /
    • 2000
  • This study was investigated to estimate optimal conditions and biological oxic denitrification to treat wastewater with low C/N ratio and high strength total inorganic nitrogen (TIN) concentration by using $A_2O$ fixed biofilm system. The lab-scale experimental system packed with media, which were composed of polyvinylidene chloride fiber (oxic basin) and ceramic ball (anaerobic and anoxic basin), was used. This system was operated with various influent alkalinities at the C/N(TOC/TIN) ratio of 0.5. The study results showed that TOC were removed over 96.0% at all operation conditions. The removal efficiencies over 93.5% for $NH_4{^+}-N$ and 81.8% for TIN were obtained at the alkalinity of about 1210mg/L(Run 5). Among the removal of TIN, 64.9% was occurred by biological denitrification at an oxic basin. It was confirmed through mass balance of alkalinity and nitrogen that the amount of alkalinity produced during biological denitrification at oxic basin was 2.49~3.46 mg Alkalinity/mg $NO_2{^-}-N$, ${\Delta}TOC/{\Delta}DEN$ of 0.34 (Run 5) was obtained at an oxic basin, which was less than the theoretical value of 1.22.

  • PDF

Irrigation Water Qualities along Dong-Jin River Watershed during 1994-1998 (동진강 수계 농업용수 수질평가)

  • Uhm, Mi-Jeong;Choi, Jeong-Sik;Han, Soo-Gon;Kim, Kab-Cheol;Moon, Young-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • This study was conducted to monitor the irrigation water qualities along Dong-Jin river watershed. The water quality was surveyed at 6 sites from April to september during $1994{\sim}1998$. And the results were as follows : In July and August, water quality was better than that of any other months due to dilution with rainwater. Whereas, it became worse in April but it involved lower contents than limitted contents affected to the crop damage. Content of inorganic components was higher at Jeong-up and Won-pyeong stream. The reason for it that Jeong-up stream was deteriorated with sewage water from Jeong-up city, and Won-pyeong stream has narrow width. Water quality in upstream of Dong-Jin river, was evaluated best conditions in all sampling sites. For investigated period, water quality got worse from 1994 to 1995 but it was getting better to 1998 after 1995, especially at Jeong-up stream. The total equivalent of cation and anion was the highest at April through all months and at Jeong-up stream in sampling sites. Equivalent ratio of cation to $anions({\Sigma}C/{\Sigma}A)$ was higher at May than any other months and lower at Won-pyeong streams than any other sites. The value of most inorganic components was highly correlated with those of other components. But the value of $NO_3\;^--N$ was not correlated with that of most components, and $PO_4\;^{3-}-P$ was not correlated with COD, $NH_4\;^+-N$, $NO_3\;^--N$, $SO_4\;^{2-}$.

  • PDF

Fertilizer Effect of Waste Nutrient Solution in Greenhouses for Young Radish Cultivation (열무 재배를 위한 시설하우스 폐양액의 비료 효과)

  • Hong, Youngsin;Moon, Jongpil;Park, Minjung;Son, Jinkwan;Yun, Sungwook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.460-467
    • /
    • 2022
  • The purpose of this study is to enhance utilization of the waste nutrient solution (WNS) disposed at the hydroponic greenhouse. Several sets of testing were conducted to examine the effects of WNS: (a) a fertilizer effect, (b) soil column leaching, and (c) crop cultivation. The fertilizer effect test was applied in young radish cultivation by examining the growth characteristics of young radish and soil based on inorganic nitrogen according to the soil treatment of the nitrogen fertilizer (NF) and the WNS. The fertilizer effects and crop cultivation test were conducted with five treatments (A-E): A, non-treatment (water); B, 100% of NF; C, 70% of NF + 30% of WNS; D, 50% of NF + 50% of WNS; and E, 30% of NF + 70% of WNS. The soil column leaching test was conducted with three treatments: non-treatment (water), 100% of NF, 50% of WNS + 50% of NF. As a result, the chemical properties of the WNS were pH 6.0, EC 2.4dS·m-1, total phosphorus (T-P) 28mg·L-1, ammonium nitrogen (NH4-N) 5.0mg·L-1, and nitrate nitrogen (NO3-N) 301mg·L-1. The chemical properties of the soil were pH 5.51, EC 0.31dS/m, organic matter 2.08g·kg-1, NO3-N 9.64mg·kg-1, and NH4-N 3.20mg·kg-1. The results of fertilizer effects showed that the ratio of 50% or less of NF and 50% or more of WNS was high in young radish growth. There was no statistically significant difference between the soil chemistry in the C-E treatments where WNS was mixed with NF and the B treatment where only NF was applied. As a result of the soil column leaching test, there was no significant difference in the concentrations of NO3 and NH4 in the treatment of 100% of NF and 50% of NF + 50% of WNS. The study indicates, if the mixed fertilizer of WNS and NF is applied in the soil cultivation of young radish, it will reduce the use of NF and environmental pollution. This also helps reduce production costs on farmers and increase the yield of young radish.

Soil Chemistry Changes after N, P, and K Fertilization in a Willow(Salix spp.) Bioenergy Plantation (버드나무(Salix spp.) bioenergy 조림지내(造林地內) N, P, K 시비(施肥)가 토양화학성(土壤化學性) 변화(變化)에 미치는 영향(影響))

  • Park, Gwansoo
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.311-318
    • /
    • 1997
  • Chemical properties of soil(N, P, K, Ca, Na, Mg, CEC, and pH) were studied after annual additions of $NH_4NO_3$(336kg/ha N), treble superphosphate(112kg/ha P), and KCl(224kg/ha K) fertilizers in a willow(Salix spp.) bioenergy plantation. Soil samples were collected from November through December 1992 from previously established the fertilized and non-fertilized willow plantation at Tully, New York, U.S.A. in 1987. Total fertilizer additions from 1987 through 1991 were 1,680kg/ha N and 560kg/ha P and 1.120kg/ha K. Fertilization with N, P, and K resulted in no difference in total soil N content between the fertilized and non-fertilized plots, increased soil P and K, decreased base cations ($Ca^{2+}$ and $Mg^{2+}$) and soil pH, and increased soil pH with soil depth. Strong positive correlations of soil carbon to soil N, Ca, Mg, and CEC were noted. Soil C/N ratio in the study plots ranged from 9.6 to 11.2 for all treatment combinations. Significant differences in soil P, K, Ca, and pH between the fertilized and non-fertilized plots indicate that fertilization had changed chemical properties of soil in this fertilizer trial.

  • PDF

Survey on the Precipitation Component in Iri Area of Chonbuk Province (전북(全北) 이리지역(裡里地域)의 강수성분(降水成分) 조사(調査))

  • Kang, Jong-Gook;Shim, Hyeong-Kwon;Lee, Jong-Sik;Kim, Jong-Gu;Lee, Jae-Kil;So, Jea-Don
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 1995
  • This study was carried out to investigate the deposition aspect of acid precipitation in rural area of Chonbuk province by analysis of the chemical components in the precipitation at National Honam Agricultural Experiment Station, RDA in the suburbs of Iri from Jan. to Dec. in 1992. The results are summarized as follows: 1. The frequency of acid precipitation was 82.5% in 1992 and the month of the lowest frequency of 17% was June. 2. The pH range of the most precipitation amount was pH $4.5{\sim}5.0$ of 54.0% and the amount and ratio of the precipitation below pH 4.0 were 9.6 mm and 1.1%, respectively. 3. The seasonal acidity of precipitation was Summer(4.78)>Fall(4.59)>Spring(4.52)>Winter(4.16). 4. The components showed significant correlation with pH value were $SO_4^{2-}$ and $NO_3$ and the equivalence ratio between two components was 2.85 : 1. 5. The order of the major ion concentration in the precipitation was $SO_4^{2-}$>$NH_4^+$>$Cl^-$>$Ca^{2+}$>$NO_3^-$>$Na^+$>$H^+$>$K^+$>$Mg^{2+}$ and the equivalence ratio of total anion to cation was 1.20. 6. Deposition amount of nitrogen ($NO_3-N$ + $NH_4-N$) and potassium ($K_2O$) were 1.19 and 0.53 kg/l0a/year, respectively.

  • PDF