옥수수입의 라이신 및 트립토페인 량을 증가시키기 위해서 오페이크-2 인자와 오페이크-2 옥수수입의 표현형을 변갱시키는 변갱 오페이크-2 인자를 사용하여 합성한 부여 No 2 옥수수와 부여 No. 3 옥수수의 입특성을 분석조사하였다. 부여 No. 2나 부여 No. 3 옥수수의 입 특성을 정확히 아는 것은 이들 옥수수의 증수를 위한 육종방법을 규명하는데 필요하기 때문이다. 따라서 입의 물리적 특성으로서 표현형을 본 결과 부여 No 2나 부여 No.3 모두 원래 오페이크-2 옥수수입이 보여주는 표현형과는 매우 다르게 변갱 되었지만 부여 No. 2는 부여 No.3보다 더 보통 옥수수에 가깝게 변갱되었다. 그리고 부여 No. 2는 동일품종내에서도 표현형의 변이가 매우 크게 분포되어 있었다. 입중에 있어서 부여 No. 2는 No. 3보다 입중이 가벼웠는데 그 이유는 크기가 작기 때문이었다. 배유의 밀도는 부여 No. 3이 제일 작았고 이는 입의 경도에도 크게 영향을 주었다. 부여 No. 2의 소입성은 조와 배유의 함량에도 영향을 주어 일정량으로 옥수수를 두고 볼 때 소입중 부여 No.2는 대입중인 부여 No.3보다 배의 양이 많았다. 변갱오페이크 옥수인 부여 No. 2와 부여 No. 3의 배유내 전분조직을 현미경 관찰한 결과 부여 No.2 옥수수입은 배유내 연질전분 조직과 경질전분 조직이 동시에 매우 다양하게 되어 있었다. 필수 아미노산의 하나인 라이신 함량은 부여 No.2가 공시품종 가운데서 가장 높았다.
We present our recent temperature-programmed desorption (TPD) study on catalytic reductions of $NO_x$ such as NO, $NO_2$, and $N_2O$ over rutile $TiO_2$(110) surfaces. Our results indicate that $NO_2$/NO readily reacts to give NO/$N_2O$ desorption at the substrate temperature as low as 100 K/70 K. Interestingly, $N_2O$, however, does not dissociate into $N_2$ and $O_{BBO}$ over the oxygen vacancy on the $TiO_2$(110) surface. Successive reduction of NO and $NO_2$ into $N_2O$ and NO, respectively, leaves oxygen atoms on the $TiO_2$(110) surface in a form of $O_{ad}$, which can induce additional reductive channels of NO and $NO_2$ at higher temperatures up to 400 K. During the repeated TPD cycles of $NO_x$, our x-ray photoelectron spectroscopy (XPS) analysis indicates that no N atom accumulates on the $TiO_2$ surface.
$[{Mo(NO)_2Cl_2}_n]$ 및 $[{W(NO)_2Cl_2}_n]$의 다핵착물과 킬레이트 리간드인 1,10-phenanthroline을 반응시켜 중성화합물인 $[Mo(NO)_2Cl_2(phen)]$ 과 $[W(NO)_2Cl_2(phen)]$을 각각 합성하였다. 아세톤 용매에서 이 cis-디니트로실 화합물과 과염소산 은(I)을 1:1로 반응시켜 $[Mo(NO)_2(phen)(S)Cl][ClO_4]$ 및 $[W(NO)_2(phen)(S)Cl] [ClO_4]$ (S = acetone)의 양이온 화합물을 얻었다. 이 1가 양이온 화합물과 피라진을 2:1의 양론으로 각각 반응시켜 $[Cl(phen)(NO)_2M(pyz)M'(NO)_2(phen)Cl][C1O_4]_2$(M = Mo, M' = W) 및 $[Cl(phen)(NO)_2M(pyz)M'(NO)2(phen)Cl][C1O4]2$(M = Mo, M' = W)형의 호모 및 헤테로 이핵착물을 합성하였다. 합성한 착물의 특성은 원소분석과, $^1H-,\;^{13}C-$핵자기 공명 및 자외선, 전자흡수스펙트럼을 이용해서 조사하였으며 이들 분광학적 결과로부터 디니트로실 이핵착물의 기하학적 구조가 피라진 다리 리간드를 중심으로 한 $C_{2v}$ 대칭구조임을 확인할 수 있었다.
Nitrogen dioxide ($NO_2$) is an important urban pollutant in Korea. Expecially, diesel vehicles are responsible for the most traffic rated nitrogen oxide ($NO_X$) emission, including nitric oxide (NO) and nitrogen dioxide ($NO_2$). Though nitrogen oxide ($NO_X$) emission from vehicle was applied a strict enforcement of emission standard, the specific $NO_2$ fraction in $NO_X$ ($NO_2/NO_X$) from various types of diesel vehicles was not understood. In order to investigate the fraction of $NO_2/NO_X$, the vehicle emission study was carried out at the facility of Transport Pollution Research Center (TPRC), National Institute of Environmental Research (NIER), Korea. Three different types of diesel vehicles(VAN, SUV, passenger) were tested on the NIER driving mode. The result of $NO_2/NO_X$ ratio was over 0.1 for all test vehicles and the highest $NO_2$ emission was observed at the van vehicle. The observation was showed that the emission trend of $NO_2/NO_X$ for passenger and SUV vehicles were inversely proportional. Also, as the emission standard has been strengthen, the emission rate of $NO_2$ has been decrease.
This study was conducted to understand roles of $NO_x(=NO+NO_2)$ on high $O_3$ episodes at an urban monitoring station in Seoul. Concentrations of NO, $NO_2$, $NO_y$ and $O_3$ were measured intensively at KIST monitoring station which located at urban center in Seoul metropolitan area during May 18~June 13, 2015. Sampling period was planed because high $O_3$ and PM occurred frequently during from late spring to early summer months in Seoul. The experimental site locates in NW from center of Seoul and is surrounded by residential area. Belt highway of the city runs from north to west side nearby experimental site. Vehicle exhaust emissions due to heavy traffic influenced $NO_x$ concentration at the site during northwesterly wind. Specific $NO_2$ concentration was measured by Blue Light photolytic converter, and it was compared to $NO_2$ concentration measured by molybedenum converter. $[NO_2]_{phtolysis}$ was usually lower than $[NO_2]_{molybedenum}$ during the experiment period; however their diurnal variations were very similar. The linear relationship between these $NO_2$ concentrations was found to be $[NO_2]_{phtolysis}$=0.64 $[NO_2]_{molybedenum}$ - 2.6, $r^2$=0.83 during May 16~8, 2015. The difference between $NO_2$ by molybdenum converter and by photolytic converter (${\Delta}NO_2=[NO_2]_{molybedenum}-[NO_2]_{phtolysis}$) accounted for residual $NO_y$ which can represent $NO_z$ (=$NO_y-NO_x$). $O_3$ concentration showed typical daily trend which has maximum at late afternoon and minimum during the night. $O_3$ increased at a rate of 7 ppb/hr since 8 am. and reached the maximum concentration (~80 ppb) at 3 pm.. The diurnal pattern of $O_3$ was inversely related with that of $NO_2$, suggesting that the formation of $O_3$ was the result of photochemical activity of $NO_2$.
Indoor and outdoor nitrogen dioxide(NO$_2$) concentrations of 122 houses were measured and compared with measurements of personal NO$_2$ exposure simultaneously . Time activity patterns were used to determine the impacts on NO$_2$ exposure assessment and time weighed average model to estimate the personal NO$_2$ exposure. Most people spent their times more than 80% of indoor and more than 50% in home, respectively. Personal NO$_2$ esposure was found to be significantly associated with both indoor NO$_2$ concentration(r=0.70) and outdoor NO$_2$ concentration (r=0.68). Using time weighted average model, personal NO$_2$ exposure was estimated with NO$_2$ measurements in indoor home, indoor workplace and outdoor home. The estimated NO$_2$ measurements were significantly correlated with measured personal exposures(r=0.69, N=122). For the difference between measured and estimated NO$_2$ exposures by multiple regression analysis showed that NO$_2$ concentrations in near workplace and other outdoors of no NO$_2$ measurements affected the personal NO$_2$ exposures(p=0.023).
The characteristics of DeNOx conversion process by plasma/post-heating system with the simulated gas containing ethene is investigated experimentally. Without plasma treatment, $NO-NO_2$ conversion doesn't occur by $400^{\circ}C$ in a mixture of $N_2/O_2$ with a trace gas of ethene. But $NO-NO_2$ conversion occurs as temperature increases above $400^{\circ}C$. The NO can, however, be converted to $NO_2$ at lower temperatures by treating the gas mixture with non-thermal plasma. The $NO-NO_2$ conversion enhances further by passing the plasma treated gas through the post-heating furnace. Results show that 20%${\sim}50%$ more conversion of NO to $NO_2$ is observed when the temperatures of the post-heating furnace are maintained at $300^{\circ}C$ or $400^{\circ}C$. The additional $NO-NO_2$ conversion by post-heating is due to the reaction of ethene with the byproducts or radicals generated from the plasma reaction.
혼합금속산화물에 담지된 Pd-Rh 허니컴 촉매 상에서 NO와 $N_2O$를 동시에 저감하기 위한 반응 온도를 낮추면서 각각의 반응물에 대한 전환율을 높이기 위하여, 환원제로 수소 또는 일산화탄소 사용에 대해 조사하였다. 각각의 환원제 사용 시, NO와 $N_2O$의 전환율에 대한 반응 조건의 영향을 조사하기 위해 반응온도, 각 환원제와 산소의 농도, NO와 $N_2O$ 간의 농도 비율 등을 변화시켰다. 먼저 수소를 환원제로 사용하는 경우, 산소의 부재시 $200^{\circ}C$ 미만의 저온에서 50% 이상의 NO와 $N_2O$ 전환율을 얻을 수 있었다. 한편, 일산화탄소를 환원제로 사용하는 경우에는 NO와 $N_2O$ 전환율이 각각 $200^{\circ}C$와 $300^{\circ}C$ 이상에서 증가하기 시작하였다. 그러나, 두 가지 환원제 모두의 경우에서, 반응 가스내에 산소 농도가 증가함에 따라 $N_2O$와 NO 전환율에 감소하였다. 결과적으로 일산화탄소 환원제에 비해, 수소 환원제가 상대적으로 저온에서 NO와 $N_2O$를 동시에 저감할 수 있으며, 산소 농도에 의한 영향을 덜 받는 것으로 나타났다. 반면, 반응물내 $N_2O$와 NO 농도비에 의한 NO와 $N_2O$ 전환율의 영향은 환원제의 종류에 크게 영향을 받지 않는 것으로 관찰되었다. 저온에서 NO와 $N_2O$를 동시에 저감시키기 위해서는 산소 분위기보다는 수소 분위기에서 촉매를 전처리하는 것이 보다 효과적인 것으로 나타났다.
서울특별시 을지로 입구 네거리에서 1964년 8월 1일과 1965년 3월 6일에 대기의 오염도를 측정하였다. 자동차 폐가스로 오염되리라 생각되는 유해 가스 중 Pb, $SO_2,\;NO2,$ CO 및 $CO_2$의 농도를 측정하였다. 동시에 교통량도 조사하였다. Pb의 농도의 범위는 $21{\sim}2{\mu}./m^3, SO_2는\;0.33{\sim}0.001ppm$., $NO_2는\;1.30{\sim}0.02ppm$., CO는 $40{\sim}<5ppm$., $CO_2$는 $0.040{\sim}0.034%$였다. 평균농도는 Pb $11.3{\mu}./m^3., SO_2 0.08ppm, NO_2 0.09ppm., $NO 0.37ppm., CO 16ppm 그리고 0.038%였다. 일반적으로 Pb, NO2, NO, CO, $CO_2$의 농도는 교통량과 정비례하였다. 또 겨울 철에는 연탄 폐가스로 인해 $NO_2,SO_2 NO, CO, CO_2$의 농도가 여름 철보다 많았다.
현대 생활에서 대부분의 사람들은 90%이상을 실내(가정, 일반사무실, 실내작업장, 공공건물, 지하시설물, 상가, 음식점, 자동차, 지하철 등)에서 생활하기 때문에 실내공기질(indoor air quality)은 개인이 오염물질에 노출되는 주요한 요인이다. 이산화질소($NO_2$)는 고온의 연소과정에서 발생되는 부산물로써 차량, 발전소와 산업장 등에서 발생되고 있다. 실내에서 이산화질소의 농도는 가스레인지, 케로센(kerosene) 난방기, 흡연에 주로 영향을 받는다. $NO_2$는 호흡기 증상과 관련된 각종 질환을 유발시키는 것으로 보고되고 있다. 본 연구는 한국의 서울에서 직장인 95명의 시간활동도가 조사되었으며, 호주 브리스베인에서 직장인 57명의 시간활동도와 동시에 각 가정의 실내.외 및 직장의 $NO_2$ 농도를 측정하였다. 또한 개인 $NO_2$ 노출을 예상하여 각 도시의 빈도분포를 예상하였다. 본 연구의 결과를 보면 다음과 같다. 1. 서울의 95명의 직장인들은 실내에서 약 83.8%의 시간을 보냈으며, 브리스베인의 57명의 직장인들은 실내에서 약 88.3%의 시간을 보냈다. 2. 브리스베인에서 측정된 실내의 NO2 평균농도는 10.5ppb(${\pm}5.6$), 실외의 NO2 평균농도는 14.5ppb(${\pm}5.8$), 직장에서의 $NO_2$ 평균농도는 18.2ppb(${\pm}5.0$)였다. 개인의 $NO_2$ 노출은 평균 15.0ppb(${\pm}5.2$)였다. 개인의 $NO_2$ 노출은 실외의 $NO_2$ 농도(r=0.42)보다 실내의 $NO_2$ 농도(r=0.42)보다 실내의 NO2 농도(r=0.49)에 상관성이 더 높았다. 3. 시간 가중치 모델을 이용한 개인 $NO_2$ 노출은 측정된 개인 NO2 노출과 통계학적으로 상관성을 가지고 있었다(r=0.58). 예측된 개인 $NO_2$ 노출은 측정된 $NO_2$ 노출보다 낮게 나타났으며, 이것은 출퇴근 등에 의한 교통의 이동에 따른 노출 때문인 것으로 생각되었다. 4. $NO_2$ 농도 분포를 log-normal 분포, 시간활동도를 Normal 분포로 가정하고 Monte-Carlo 시뮬레이션을 했을 때 서울의 직장인의 개인 노출은 평균 36.7ppb(${\pm}10.9$)였으며, 브리스베인의 직장인의 개인 노출은 평균 13.7ppb(${\pm}4.1$)였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.