• Title/Summary/Keyword: $NO_2$ sensor

Search Result 606, Processing Time 0.03 seconds

Ag-functionalized SnO2 Nanowires Based Sensor for NO2 Detection at Low Operating Temperature (NO2 감응을 위한 Ag 금속입자가 기능화된 SnO2 나노선 기반 저온동작 센서)

  • Choi, Myung Sik;Kim, Min Young;Ahn, Jihye;Choi, Seung Joon;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2020
  • In this study, Ag-functionalized SnO2 nanowires are presented for NO2 gas sensitive sensors at low temperatures (50℃). SnO2 nanowires were synthesized using vapor-liquid-solid method, and Ag metal particles were functionalized on the surface of SnO2 nanowires using flame chemical vapor deposition method. As a result of the sensing test about Ag-functionalized SnO2 nanowires based sensor, the response (Rg/Ra) to 10 ppm NO2 was 1.252 at 50℃. We believe that metal-functionalizing is a one of good way to increase the feasibility about semiconductor gas sensor.

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots (P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서)

  • JinBeom Kwon;YunTae Ha;SuJi Choe;Soobeen Baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

NoSQL-based Sensor Web System for Fine Particles Analysis Services (미세먼지 분석 서비스를 위한 NoSQL 기반 센서 웹 시스템)

  • Kim, Jeong-Joon;Kwak, Kwang-Jin;Park, Jeong-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.119-125
    • /
    • 2019
  • Recently, it has become a social problem due to fine particles. There are more people wearing masks, weather alerts and disaster notices. Research and policy are actively underway. Meteorologically, the biggest damage caused by fine particles is the inversion layer phenomenon. In this study, we designed a system to warn fine Particles by analyzing inversion layer and wind direction. This weather information system proposes a system that can efficiently perform scalability and parallel processing by using OGC sensor web enablement system and NoSQL storage for sensor control and data exchange.

Thick Film Gas Sensor Based on PCB by Using Nano Particles (나노 입자를 이용한 PCB 기반 후막 가스 센서)

  • Park, Sung-Ho;Lee, Chung-Il;Song, Soon-Ho;Kim, Yong-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.59-63
    • /
    • 2007
  • This paper presented a low-cost thick film gas sensor module, which was based on simple PCB (Printed Circuit Board) process. The proposed sensor module included a $NO_2/H_2$ gas sensor, a relative humidity sensor, and a heating element. The $NO_2/H_2$ gas and relative humidity sensors were realized by screen-printing $SnO_2,\;BaTiO_3$ nano-powders on IDTS (Interdigital Transducer) of a PCB substrate, respectively. At first 1% $H_2$ gas flowed into the sensor chamber. After 4 min, air filled the chamber while $H_2$ gas flow stopped. This experiment was performed repeatedly. The Identical procedure was used for the $NO_2$ detection. The result for sensing $H_2$ gas showed the increase of voltage from 0.8V to 3.5V due to the conductance increase and its reaction response time by hydrogen flow was 65 sec. $NO_2$ sensing results showed 2.7 V voltage drop due to the conductance decrease and its response time was 3 sec through a voltage monitoring.

  • PDF

Synthesis of Au@TiO2 Core-shell Nanoparticle-decorated rGO Nanocomposite and its NO2 Sensing Properties

  • Kumar Naik, Gautam;Yu, Yeon Tae
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.225-230
    • /
    • 2019
  • $Au@TiO_2$ core-shell decorated rGO nanocomposite (NC) was prepared using a simple solvothermal method followed by heat treatment for gas sensor application. The crystal structure and morphology of the composites were characterized by X-ray powder diffraction and transmission electron microscopy, respectively. The $NO_2$ sensing response of the $Au@TiO_2/rGO$ NC was tested at operating temperatures from $250^{\circ}C$ to $500^{\circ}C$, and was compared with those of the bare rGO and $Au@TiO_2$ core-shell NPs. The $Au@TiO_2/rGO$ NC-based sensor showed a far higher response than the rGO or $Au@TiO_2$ core-shell based sensors, with the maximum response detected when the operating temperature was $400^{\circ}C$. This improved response was due to the high rGO gas absorption capability for $NO_2$ gas and the catalytic effect of $Au@TiO_2$ core-shell NPs in oxidizing $NO_2$ to $NO_3$.

Fabrication and Characteristics of WO$_3$ Thick Film Gas Sensor for Detecting NO$\chi$ Gas Using Screen Printing Technique (스크린 프린팅법을 이용한 NO$\chi$ 감지용 WO$_3$ 후막형 가스센서의 제조 및 특성연구)

  • 박종현;김태균;송호근;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.237-243
    • /
    • 1999
  • 스크린 프린팅법을 이용하여 NOX 감지용 WO3 후막형 가스센서를 제조하였다. 본 실험에서는 감지막의 소성 온도에따른 감도변화 및 Ru을 첨가함으로써 감도의 증진을 중점적으로 조사하였다. 또한 NO2 50 ppm하에서 CO, H2, CH4 그리고 i-C4H10등의 가스에 대하여 cross sensitivity를 조사하였다. WO3 가스센서는 소성온도 50$0^{\circ}C$, 작동온도 30$0^{\circ}C$에서 최대감도를 얻었다. 순수한 WO3에 Ru(0.004 wt%)을 첨가시 NO2 및 NO 가스에 대한 감도가 크게 증진되었다. 그러나 순수한 WO3 센서는 Ru(0.004 wt%)이 첨가된 WO3 센서보다 더 우수한 cross sensitivity를 보였다.

  • PDF

Sensor Device Plug & Play for Ubiquitous Computing (유비쿼터스 컴퓨팅을 위한 센서 디바이스 Plug & Play)

  • Park, Jung-Sun;Eun, SeongBae;Yoon, Hyeon-Ju
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.3
    • /
    • pp.151-156
    • /
    • 2012
  • When mounting the sensor device in the way of Plug&Play, sensor device drivers need to be loaded and linked dynamically. Since a sensor node platform is based on small 8 bit MCU, dynamic loading and linking technique used in Windows and Linux can not be applied. In this paper, we present how to link and load dynamically sensor device drivers for sensor device Plug&Play. We implement a prototype and evaluate it to make sure that there is no performance degradation like sensor device driver connection speed and memory usage. Connection speed overhead increases to 0.2ms. Memory usage overhead increases to hundreds byte. It shows that there is no heavy influence in running the actual program.

$NO_2$ Gas Sensor Utilizing Pt-$WO_3-Si_3N_4-SiO_2$-Si-Al Capacitor (Pt-$WO_3-Si_3N_4-SiO_2$-Si-Al 캐패시터를 이용한 $NO_2$ 가스 센서)

  • 김창교;이주헌;이영환;유광수;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.105-108
    • /
    • 1998
  • Pt-WO$_3$-Si$_3$N$_4$-SiO$_2$-Si-Al 캐패시터를 이용한 NO$_2$ 가스 센서를 개발하였다. 표준 실리콘 MNOS구조에 촉매 게이트로 Pt와 가스 흡착층으로 WO$_3$를 이용함으로서 전통적인 세라믹 가스 센서보다 낮은 온도에서 NO$_2$ 가스를 감지할 수 있었다. 은도 변화와 NO$_2$ 가스 농도의 변화에 따라서 디바이스의 NO$_2$ 가스 감도를 조사하였다. Pt-WO$_3$ 계면에서 NO$_2$ 이온농도의 변화에 기초로 한 가스 감지 모델을 제시하였다. 제시된 가스 감지 모델을 계면에서의 가스 반응 속도론에 의하여 분석함으로서 확인하였다.

  • PDF

MEMS based on nanoparticle gas sensor for air quality system (유해가스 차단시스템용 MEMS 가스 센서)

  • Lee, Eui-Bok;Park, Young-Wook;Hwang, In-Sung;Kim, Sun-Jung;Cha, Jun-Gho;Lee, Ho-Jun;Lee, Jong-Heun;Ju, Byeong-Kwon
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.37-42
    • /
    • 2009
  • In this study, nanopower ZnO and $SnO_2$ as sensing materials were prepared by hydrazine and hydrothermal routes, respectively, and were doped with Pd, Ru catalyst. The CO and $NO_2$ sensors were fabricated by coating of sensing materials on the MEMS-based structure with electrodes and heaters. The 0.1 wt% Pd doped $SnO_2$ sensor and Ru doped ZnO sensor showed the high sensor response to CO 30 ppm and $NO_2$ 1 ppm, respectively. The sensor signal was stable. This can be used for the detection of pollutant gases emitted from gasoline engine.

  • PDF

Fabrication and Characteristics of SnO2 Thick Film Devices for Detection of NO2 (NO2 감지용 SnO2 후막소자의 제작 및 특성)

  • Sohn, Jong Rack;Han, Jong Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.2
    • /
    • pp.332-338
    • /
    • 1997
  • $SnO_2$ as raw material of sensor for $NO_2$ detection was prepared by precipitating $SnCl_4$ solution with aqueous ammonia followed by calcining in air. The characterization of $SnO_2$ was carried out using FT-IR and XRD, and $SnO_2$ thick film sensor was fabricated by screen-printing method. The particle size of $SnO_2$ calcined at higher temperature increased due to the growth of crystalline. $SnO_2$ sensor fabricated by using $SnO_2$ sample calcined at $1000^{\circ}C$ followed by heat treatment at $700^{\circ}C$ exhibited excellent sensing characteristics and selectivity for $NO_2$ gas at the operating temperature of $250^{\circ}C$.

  • PDF