• Title/Summary/Keyword: $NH_3$ gas

Search Result 801, Processing Time 0.032 seconds

Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers (질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.

Production of Poly-3-hydroxybutyrate from Xylose by Bacillus megaterium J-65 (Bacillus megaterium J-65에 의한 xylose로부터 poly-3-hydroxybutyrate 생산)

  • Jun, Hong-Ki;Jin, Young-Hi;Kim, Hae-Nam;Kim, Yun-Tae;Kim, Sam-Woong;Baik, Hyung-Suk
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1625-1630
    • /
    • 2008
  • A microorganism capable of producing high level of poly-3-hydoxybutyrate (PHB) from xylose was isolated from soil. The isolated strain J-65 was identified as Bacillus megaterium based on the morphological, biochemical and molecular biological characteristics. The optimum temperature and pH for the growth of B. megaterium J-65 were $37^{\circ}C$ and 8.0, respectively. The optimum medium composition for the cell growth was 2% xylose, 0.25% $(NH_4)_2SO_4$, 0.3% $Na_2HPO_4{\cdot}12H_2O$, and 0.1% $KH_2PO_4$. The optimum condition for PHB accumulation was same to the optimum condition for cell growth. Copolymer of ${\beta}$-hydroxybutyric and ${\beta}$-hydroxyvaleric acid was produced when propionic acid was added to shake flasks containing 20 g/l of xylose. Fermenter culture was carried out to produce the high concentration of PHB. In batch culture, cell mass was 9.82 g/l and PHB content was 35% of dry cell weight. PHB produced by B. megaterium J-65 was identified as homopolymer of 3-hydoxybutyric acid by GC and NMR.

Development of Biofilter for Reducing Offensive Odor from Pig House (돈사 악취 저감을 위한 바이오필터 개발)

  • Lee, Seung-Joo;Lim, Song-Soo;Chang, Dong-Il;Chang, Hong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • This study was conducted to develop the biofilter fur reducing ammonia $(NH_3)$ and hydrogen sulfide $(H_2S)$ gas emission from a pig house. A biofilter was designed and constructed by a type of squeeze air into the column type of air flow upward. Its column size was ${\Phi}260{\times}360mm$. It was used pressure drop gauge, turbo blower, air temperature, velocity sensor and control program that was programed by LabWindows CVI 5.5. Mixing materials were consisted with composted pine tree bark and perlite with 7:3 ratio (volume). The biofilter media inoculated with ammonia (Rhodococcus equi A3) and hydrogen sulfide (Alcaligenes sp. S5-5.2) oxidizing microorganisms was installed in a commercial pig house to analyzed the effectiveness of biogas removal for 10 days. Removal rates of ammonia and hydrogen sulfide gases were 90.8% and 81.5%, respectively. This result suggests that the pine compost-perlite mixture biofilter is effective and economic for reducing ammonia ana hydrogen sulfide gases.

Atmospheric Acid Deposition : Nitrogen Saturation of Forests (대기 산성 강하물 : 삼림의 질소 포화)

  • Kim, Joon-Ho
    • Journal of Ecology and Environment
    • /
    • v.29 no.3
    • /
    • pp.305-321
    • /
    • 2006
  • Atmospheric Acid Deposition: Nitrogen Saturation of Forests: Volume weighted annual average wet deposition of nitroge at 33 sites in Korea during 1999-2004 ranged 7.28 to $21.05kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$ with average $12.78kgN{\cdot}ha^{-1}{\cdot}yr^{-1}$, which values are similar level with nitrogen deposition of Europe and North America. The temperate forests that suffered long-term high atmospheric nitrogen deposition are gradually saturated with nitrogen. Such nitrogen saturated forest watersheds usually leach nitrate ion ($NO_3^-$) in stream water and soil solution. It may be likely that Korean forest ecosystems are saturated by much nitrogen deposition. In leaves with nitrogen saturation ratios of N/P, N/K and N/Mg are so enhanced that mineral nutrient system is disturbed, suffered easily frost damage and blight disease, reduced fine-root vitality and mycorrhizal activity. Consequently nitrogen saturated forests decrease primary productivity and finally become forest decline. Futhermore understory species are replaced the nitrophobous species by the nitrophilous one. In soil with nitrogen saturation uptake of methane ($CH_4$) is reduced and emission of nitrogen monoxide (NO) and nitrous oxide ($N_{2}O$) are increased, which gases are greenhouse gas accelerating global warming.

Effect of Dietary Bacillus subtilis on Growth Performance, Immunological Cells Change, Fecal NH3-N Concentration and Carcass Meat Quality Characteristics in Finishing Pigs (비육돈 사료내 Bacillus subtilis의 첨가가 성장, 면역세포 변화, 분내 암모니아태질소 함량 및 도체 특성에 미치는 영향)

  • Cho, J.H.;Chen, Y.J.;Min, B.J.;Kim, H.J.;Shon, K.S.;Kwon, O.S.;Kim, J.D.;Kim, I.H.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.937-946
    • /
    • 2005
  • This experiment was conducted to investigate the effects of dietary Bacillus subtilis on growth performance, nutrient digestibility, immunological cells change, fecal noxious gas and carcass meat quality characteristics in finishing pigs. The dietary treatments were 1) CON(basal diet), 2) BS0.1(basal diet+ 0.1% Bacillus subtilis) and 3)BS0.2(basal diet+0.2% Bacillus subtilis). Sixty crossbred(Landrace$\time$ Yorkshire$\time$Duroc) pigs(89.5$\pm$0.11kg average initial body weight) were used in a 42 days growth trial. The pigs were assigned to the treatments according to body weight and each treatment had 5 replicates of 4 pigs per pen in a randomized complete block design. Through the entire experimental period, average daily gain(ADG) and average daily feed intake(ADFI) were not significantly different among the treatments. Pigs fed BS0.1 diet significantly increased their gain/feed compared to pigs fed CON and BS0.2 diets(P<0.05). Also, dry matter(DM) and nitrogen(N) digestibilities were greater in the pigs fed BS0.1 diet than those fed CON diet(P<0.05). There were no significant differences in fecal NH3-N concentration among the treatments. In blood assay for immunological cells change investigations, red blood cells(RBC) counts increased in the pigs fed BS0.2 diet compared to pigs fed CON and BS0.1 diets. There were no significant differences in carcass pH, drip loss, marbling and firmness. However, sensual color and a*(redness) value of meat in the pigs fed BS0.2 diet were higher than in pigs fed CON diet(P<0.05). Therefore, this experiment suggested that Bacillus subtilis supplementation could improve nutrient digestibility, RBC counts and carcass meat color of pigs.

Effects of Feeding Mushroom Substrate Waste and Probiotics on Productivity, Emission of Gases and Odors in Manure for Finishing Pigs (버섯재배 폐배지와 생균제의 급여가 비육돈의 생산성, 돈분 중 가스 및 냄새발생에 미치는 영향)

  • Choi, S.C.;Chae, B.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.529-536
    • /
    • 2003
  • A total of 72 finishing pigs(L${\times}$Y${\times}$D; 80kg of initial body weight) were employed for 5 weeks to investigate the effects of feeding mushroom substrate waste(MSW) treated with pleurotus ostreatus and probiotics on productivity, carcass traits, nutrient digestibility and emissions of harmful gases and malodor in manure. Treatments were Control(C: basal diet), T1(3% MSW) and T2(3% MSW+ 0.1% probiotics). Average daily gain(ADG) was lower(p<0.05) in pigs fed a T1 diet than those fed a C diet, however, there was no difference in ADG of pigs fed diets between C and T2. Similar trends were found in feed/gain(F/G) among treatments, though feed intake was not different. No differences were found in back fat thickness among treatments, but carcass dressing percentage was significantly(p<0.05) improved in pigs fed a T2 diet compared to C or T1 diets. Nutrient digestibilities including dry matter, crude protein, energy and crude fiber were lower(p<0.05) in T1 than C or T2. $NH_3$ and $H_2S$ gas emissions were reduced(p<0.05) or not produced in pig manure from T2 as compared to C or T1. In conclusion, the present result shows that feeding MSW with probiotics is desirable for finishing pigs in terms of productivity, carcass traits and nutrient digestibility. It also appears that the emission of harmful gases and malodor in manure can be reduced by the inclusion of probiotics in the diet.

Production of Dry Oxidant through Catalytic H2O2 Decomposition over Mn-based Catalysts for NO Oxidation (NO 산화를 위한 Mn계 촉매상 과산화수소 분해를 이용한 건식산화제 생성)

  • Jang, Jung Hee;Choi, Hee Young;Han, Gi Bo
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.130-139
    • /
    • 2015
  • The NO oxidation process has been applied to improve a removal efficiency of NO included in exhaust gas. In this study, to produce a dry oxidant for the NO oxidation process, the catalytic H2O2 decomposition method was proposed. A variety of the heterogeneous solid-acidic Mn-based catalysts were prepared for the catalytic H2O2 decomposition and the effect of their physico-chemical properties on the catalytic H2O2 decomposition were investigated. The results of this study showed that the acidic sites of the Mn-based catalysts has an influence on the catalytic H2O2 decomposition. The Mn-based catalyst having the abundant acidic sites within the wide temperature range in NH3-TPD shows the best performance for the catalytic H2O2 decomposition. Therefore, the NO oxidation efficiency, using the dry oxidant produced by the H2O2 decomposition over the Mn-based catalyst having the abundant acidic properties under the wide temperature range, was higher than the others. As a remarkable result, the best performances in the catalytic H2O2 decomposition and NO oxidation was shown when the Mn-based Fe2O3 support catalyst containing K component was used for the catalytic H2O2 decomposition.

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter (고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거)

  • Sung, Moon Sung;Chang, Duk;Seo, Seong Cheol;Chung, Bo Rim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF

Effects of purified lignin on in vitro rumen metabolism and growth performance of feedlot cattle

  • Wang, Yuxi;McAllister, Tim A.;Lora, Jairo H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.392-399
    • /
    • 2017
  • Objective: The objectives were to assess the effects of purified lignin from wheat straw (sodium hydroxide dehydrated lignin; SHDL) on in vitro ruminal fermentation and on the growth performance of feedlot cattle. Methods: In vitro experiments were conducted by incubating a timothy-alfalfa (50:50) forage mixture (48 h) and barley grain (24 h) with 0, 0.25, 0.5, 1.0, and 2.0 mg/mL of rumen fluid (equivalent to 0, 2, 4, 8, and 16 g SHDL/kg diet). Productions of $CH_4$ and total gas, volatile fatty acids, ammonia, dry matter (DM) disappearance (DMD) and digestion of neutral detergent fiber (NDF) or starch were measured. Sixty Hereford-Angus cross weaned steer calves were individually fed a typical barley silage-barley grain based total mixed ration and supplemented with SHDL at 0, 4, 8, and 16 g/kg DM for 70 (growing), 28 (transition), and 121 d (finishing) period. Cattle were slaughtered at the end of the experiment and carcass traits were assessed. Results: With forage, SHDL linearly (p<0.001) reduced 48-h in vitro DMD from 54.9% to 39.2%, NDF disappearance from 34.1% to 18.6% and the acetate: propionate ratio from 2.56 to 2.41, but linearly (p<0.001) increased $CH_4$ production from 9.5 to 12.4 mL/100 mg DMD. With barley grain, SHDL linearly increased (p<0.001) 24-h DMD from74.6% to 84.5%, but linearly (p<0.001) reduced $CH_4$ production from 5.6 to 4.2 mL/100 mg DMD and $NH_3$ accumulation from 9.15 to $4.49{\mu}mol/mL$. Supplementation of SHDL did not affect growth, but tended (p = 0.10) to linearly reduce feed intake, and quadratically increased (p = 0.059) feed efficiency during the finishing period. Addition of SHDL also tended (p = 0.098) to linearly increase the saleable meat yield of the carcass from 52.5% to 55.7%. Conclusion: Purified lignin used as feed additive has potential to improve feed efficiency for finishing feedlot cattle and carcass quality.