• Title/Summary/Keyword: $NF-_{\kappa}B$

Search Result 1,692, Processing Time 0.024 seconds

Ginsenosides-mediated Vascular Relaxation and Its Molecular Mechanisms (진세노사이드의 혈관확장작용과 분자기전)

  • Kim, Nak-Doo
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.89-98
    • /
    • 2008
  • There are increasing evidences in the literatures on the potential role of ginsenosides in treating cardiovascular diseases. In this article, current information about ginsenosides-mediated vascular relaxation are reviewed. From the published studies using isolated organs, cell culture systems and animal models, ginsenosides are shown to relax blood vessels and improve blood flow through diverse mechanisms, including nitric oxide release by activating eNOS phosphorylation via PI3K/Akt and/or ERK1/2 pathways in endothelial cells, induction of inducible nitric oxide synthase through activation of NF-${\kappa}$B, reducing the intracelluar Ca$^{2+}$ levels by activating Ca$^{2+}$-activated K$^{+}$ channels in vascular smooth muscle cells and reducing platelet aggregation by decreasing thromboxane A$_2$ formation and intracelluar Ca$^{2+}$in platelets. In addition, the relevant clinical trials regarding the effects of ginsenosides on the cardiovascular disease are summarized, particulary focusing on managing hypertension and improving thrombotic disorders. Finally, antagonistic effects of ginsenosides on the prostaglandin H$_2$ receptor and scavenging effects on the generation of oxygen-derived free radicals in spontaneously hypertensive rats (SHR) are discussed.

Modulatory Effect of BAY11-7082 on CD29-mediated Cell-cell Adhesion in Monocytic U937 Cells (BAY11-7082에 의한 U937 세포의 CD29-매개성 세포간 유착과정 조절 효과)

  • Kim, Byung-Hun;Cho, Jae-Youl
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.412-417
    • /
    • 2008
  • BAY11-7082 was initially found to be an anti-inflammatory drug with NF-${\kappa}B$ inhibitory property. In this study, we evaluated modulatory function of BAY11-7082 on U937 cell-cell adhesion induced by CD29 (${\beta}1$-integrins). BAY11-7082 strongly blocked functional activation of CD29 (${\beta}1$-integrins), as assessed by cell-cell adhesion assay. However, this compound did not block a simple activation of CD29, as assessed by cell-fibronectin adhesion assay. In particular, to understand molecular mechanism of BAY11-7082-mediated inhibition, the regulatory roles of CD29-induced actin cytoskeleton rearrangement under cell-cell adhesion and surface level of CD29 were examined using confocal and flow cytometic analysis. Interestingly, this compound strongly suppressed the molecular association of actin cytoskeleton with CD29 at cell-cell adhesion site. Moreover, BAY11-7082 also diminished surface levels of CD29 as well as its-associated adhesion molecule CD147, but not other adhesion molecules such as CD18 and CD43. Therefore, our data suggest that BAY11-7082 may be involved in regulating immune responses managed by CD29-mediated cell-cell adhesion.

The Effects of Sex Hormones on the Expression of ODF/OPG in Human Gingival Fibroblast and Periodontal Ligament Cell at Serum Concentration During Pregnancy

  • Shin, Ji-Yearn;Baek, Dong-Heon;Han, Soo-Boo
    • International Journal of Oral Biology
    • /
    • v.30 no.3
    • /
    • pp.105-110
    • /
    • 2005
  • Periodontitis is a chronic infectious disease that leads to the destruction, one of the major cause of tooth loss in human. Osteoclast Differentiation Factor(ODF), also called as Receptor activator of NF-${\kappa}B$ ligand(RANKL), a surface-associated ligand on bone marrow stromal cells and osteoblasts, activates its cognate receptor RANK on osteoclast progenitor cells, which leads to differentiation of these mononucleated precursor cells. Osteoprotegerin(OPG), a decoy receptor, is released from stromal cells and osteoblasts to inhibit the interaction between RANKL and RANK. The experiment for the effect of pregnancy on gingival health showed greater gingival inflammation and edema during pregnancy, despite similar plaque index. There should be many factors affecting the periodontal health in pregnancy. In this experiment, we examined the direct effects of sex hormones(estrogen and progesterone) on the ODF/OPG expression in human gingival fibroblasts and periodontal ligament cells at the serum concentration of pregnancy. The ratio was high in the 1st trimester of pregnancy by estrogen and in the late 2nd trimester by progesterone. Therefore, the local periodontal destruction might be accelerated by these hormonal effect on the periodontal cells.

Antiinflammatory Constituents from the Roots of Smilax bockii warb.

  • Xu Jing;Li Xian;Zhang Peng;Li Zhan-Lin;Wang Yi
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.395-399
    • /
    • 2005
  • From $70\%$ ethanol extract of the roots of Smilax bockii warb., seven flavonoids, kaempferol (1), $kaempferol-7-O-\beta-D-glucopyranoside$ (2), quercetin (3), isorhamnetin (4), (+)-dihydro­kaempferol (5), engeletin (6), isoengeletin (7), and $n-butyl-\beta-D-fructopyranoside$ (8), caffeic acid n-butyl ester (9) were isolated and identified by means of chemical and spectroscopic. Compounds 2, 4, and 6-9 were isolated for the first time from the roots of S. bockii and compounds 2, 8, and 9 were firstly isolated from the genus Smilax. In addition, using the SEAP (Secreted alkaline phosphatase) assay system, we investigated the in vitro anti-inflammatory activity of the $70\%$ ethanol extract of the roots of S. bockii, which showed moderate activity in inhibiting $TNF-\alpha-induced NF-{\kappa}B$ activation with an $IC_{50}$ value of $166.6 {\mu}g/mL$.

Immune-stimulating Effects of Polygonum aviculare L. Extract on Macrophages (마디풀(Polygonum aviculare L.) 추출물의 대식구 면역증강 효과)

  • Jeon, Chang Bae;Kim, Young Hoon;Batsuren, Dulamjav;Tunsag, Jigjidsuren;Nho, Chu Won;Pan, Cheol-Ho;Lee, Jae Kwon
    • YAKHAK HOEJI
    • /
    • v.57 no.6
    • /
    • pp.394-399
    • /
    • 2013
  • In this study we demonstrated whether the extract of Polygonum aviculare L. (PAE) can be applied to the immune-stimulating responses in macrophages (Raw 264.7 cells). Cell viability was determined by WST-8 assay, and all four doses of PAE (5, 10, 20, and 40 ${\mu}g/ml$) had no significant cytotoxicity during the entire experimental period. PAE increased the production of inducible nitric oxide synthase (iNOS) and nitric oxide (NO), and mRNA expressions and protein levels of pro-inflammatory cytokines(tumor necrotic factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$ and IL-6) in the same cells. These immune-stimulating activities of PAE were found to be caused by the stimulation of $NF{\kappa}B$ signal and phosphorylation of MAP kinases (p38, ERK and JNK).

Anti-inflammatory Effect Of Extracts from Cheongmoknosang(Morus alba L.) in Lipopolysaccharide-stimulated Raw Cells (청목노상 (Morus alba L.)추출물에 의한 Lipopolysaccharide로 유도된 Raw 246.7 cell에서 염증 억제효과)

  • Cho, Young-Je;An, Bong-Jeun
    • Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.44-48
    • /
    • 2008
  • With extracts from Cheongmoknosang, anti-inflammatory effect was examined in LPS-stimulated Raw 264.7 cells. LPS (10 ng/ml) treatment increased the production of inflammatory cytokines, $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$ but the ethanol extracts from Cheongmoknosang slightly decreased the production of $TNF-{\alpha}$ and also reduced the expression of iNOS and the production of COX-2. It seems that anti-inflammatory effects of ethanol extracts from Cheongmoknosang is partly due to the inhibition of iNOS and COX-2 expression by inhibiting nuclear translocation of $NF-{\kappa}B$ and AP-l in Raw 264.7 cells.

Anti-osteoporotic and Antioxidant Activities by Rhizomes of Kaempferia parviflora Wall. ex Baker

  • Nguyen, Phuong Thao;Bui, Thi Thuy Luyen;Lee, Sang Hyun;Jang, Hae Dong;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • In this report, we investigated the antioxidant (peroxyl radical-scavenging and reducing capacities) and anti-osteoporotic activities of extracts and isolated constituents (1 - 16) from the rhizomes of Kaempferia parviflora Wall. ex Baker on pre-osteoclastic RAW 264.7 cells. Compound 5 exhibited significant peroxyl radical-scavenging capacity, with TE value of $8.47{\pm}0.52{\mu}M$, while compound 13 showed significant reducing capacity, with CUPRAC value of $5.66{\pm}0.26{\mu}M$, at $10.0{\mu}M$. In addition, flavonoid compounds 2, 4, 6, 8, 10, 12, and terpene compound 15 showed significant inhibition of tartrate-resistant acid phosphatase (TRAP) in NF-${\kappa}B$ ligand-induced osteoclastic RAW 264.7 cells, with values ranging from $16.97{\pm}1.02$ to $64.67{\pm}2.76%$. These results indicated that K. parviflora could be excellent sources for the antioxidant and anti-osteoporotic traditional medicinal plants.

Toll-Like Receptor-Mediated Free Radical Generation in Clonorchis sinensis Excretory-Secretory Product-Treated Cholangiocarcinoma Cells

  • Bahk, Young Yil;Pak, Jhang Ho
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.5
    • /
    • pp.679-684
    • /
    • 2016
  • Clonorchiasis, caused by direct contact with Clonorchis sinensis worms and their excretory-secretory products (ESPs), is associated with chronic inflammation, malignant changes in bile ducts, and even cholangiocarcinogenesis. Our previous report revealed that intracellular free radicals enzymatically generated by C. sinensis ESPs cause NF-${\kappa}B$-mediated inflammation in human cholangiocarcinoma cells (HuCCT1). Therefore, the present study was conducted to examine the role of upstream Toll-like receptors (TLRs) on the initial host innate immune responses to infection. We found that treatment of HuCCT1 cells with native ESPs induced changes in TLR mRNA levels in a time-dependent manner, concomitant with the generation of free radicals. ESP-mediated free radical generation was markedly attenuated by preincubation of the cells with TLR1-4-neutralizing antibodies, indicating that at least TLR1 through 4 participate in stimulation of the host innate immune responses. These findings indicate that free radicals triggered by ESPs are critically involved in TLR signal transduction. Continuous signaling by this pathway may function in initiating C. sinensis infection-associated inflammation cascades, a detrimental event leading to progression to more severe hepatobiliary diseases.

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.371-377
    • /
    • 2017
  • Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

Study on the Mechanism of Radiation-induced MCP-1 Expression in RAW264.7 Macrophage Cells (RAW264.7 대식세포에서 방사선에 의한 MCP-1 발현 기작 연구)

  • Jin, Chang Hyun;Park, Yong Dae;Choi, Dae Seong;Jeong, Il Yun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.227-231
    • /
    • 2010
  • The purpose of this study was to investigate the expression mechanism of MCP-1 in gamma-irradiated RAW 264.7 macrophage cells. MCP-1 plays an important role in attracting monocyte to injured site at the early inflammation stage. However the production mechanism of MCP-1 by gamma-irradiation in RAW 264.7 macrophage cells was almost undiscovered. We found that MCP-1 was produced in RAW 264.7 macrophage cells by irradiation with 5 Gy. And these inceases were attenuated by specific inhibitors treatment, such as $NF-{\kappa}B$, JNK, ERK, JAK2, and Pyk2. These results indicate that radiation-induced MCP-1 production is mediated by MyD88- and TRIF-dependent pathways in RAW 264.7 macrophage cells. Furthermore, gamma-irradiation induced heme oxygenase-1 (HO-1) expression in RAW 264.7 macrophage cells. However this induction level was reduced before MCP-1 and $IFN-{\beta}$ production.