Immune-stimulating Effects of Polygonum aviculare L. Extract on Macrophages

마디풀(Polygonum aviculare L.) 추출물의 대식구 면역증강 효과

  • Jeon, Chang Bae (Department of Biology Education, College of Education, Chungbuk National University) ;
  • Kim, Young Hoon (Department of Biology Education, College of Education, Chungbuk National University) ;
  • Batsuren, Dulamjav (Institutes of Chemistry and Chemical Technology, MAS) ;
  • Tunsag, Jigjidsuren (Institutes of Chemistry and Chemical Technology, MAS) ;
  • Nho, Chu Won (Functional Food Center, Korea Institute of Science and Technology) ;
  • Pan, Cheol-Ho (Functional Food Center, Korea Institute of Science and Technology) ;
  • Lee, Jae Kwon (Department of Biology Education, College of Education, Chungbuk National University)
  • 전창배 (충북대학교 사범대학 생물교육과) ;
  • 김영훈 (충북대학교 사범대학 생물교육과) ;
  • ;
  • ;
  • 노주원 (한국과학기술연구원 기능성천연물센터) ;
  • 판철호 (한국과학기술연구원 기능성천연물센터) ;
  • 이재권 (충북대학교 사범대학 생물교육과)
  • Received : 2013.09.07
  • Accepted : 2013.12.16
  • Published : 2013.12.31

Abstract

In this study we demonstrated whether the extract of Polygonum aviculare L. (PAE) can be applied to the immune-stimulating responses in macrophages (Raw 264.7 cells). Cell viability was determined by WST-8 assay, and all four doses of PAE (5, 10, 20, and 40 ${\mu}g/ml$) had no significant cytotoxicity during the entire experimental period. PAE increased the production of inducible nitric oxide synthase (iNOS) and nitric oxide (NO), and mRNA expressions and protein levels of pro-inflammatory cytokines(tumor necrotic factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$ and IL-6) in the same cells. These immune-stimulating activities of PAE were found to be caused by the stimulation of $NF{\kappa}B$ signal and phosphorylation of MAP kinases (p38, ERK and JNK).

Keywords

References

  1. Wanger, H. : Search for plant deriverd natural products products with immunostimulatory activity. Pure & Appl. Chem. 66, 1271 (1990).
  2. Lee, C. G., Kim, N. J., Hong, N. D. and Kwon, C. H. : Anti-lipid peroxodation and liver protective effects of Polygonum aviculare L. Kor. J. Pharmacogn. 25, 59 (1994).
  3. Lee, E. S., Ju, H. K., Moon, T. C., Lee, E., Jahng, Y., Lee, S. H., Son, J. K., Baek, S. H. and Chang, H. W. : Inhibition of nitric oxide and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) production by propenone compound through blockade of nuclear factor (NF)- $\kappa$B activation in cultured murine macrophage. Biol. Pharm. Bull. 27, 617 (2004). https://doi.org/10.1248/bpb.27.617
  4. Higuchi, M., Higashi, N., Taki, H. and Osawa, T. : Cytolytic mechanism ofactivated macrophages. Tumor necrosis factor and L-arginine-dependent mechanism acts as synergistically as the major cytolytic mechanism ofactivated macrophages. J. Immunol. 144, 1425 (1990).
  5. McDaniel, M. L., Kwon, G., Hill, J. R., Marshall, C. A. and Corbett, J. A. : Cytokines and nitric oxides in islet inflammation and diabetes. Proc. Soc. Exp. Biol. Med. 211, 24 (1996).
  6. Corbett, J. A. and Mac Daniel, M. L. : Intraislet release of interleukin-1 inhibits beta cell function by inducing beta cell expression of inducible nitric oxide syntheses. J. Exp. Med. 181, 559 (1995). https://doi.org/10.1084/jem.181.2.559
  7. Cetkovic-Cvrlje, M. and Eizirik, D. L. : TNF and $IFN{\gamma}$ potentiate the deleterious effects of IL-1$\beta$ on mouse pancreatic islets mainly via generation of nitric oxide. Cytokine 6, 399 (1994). https://doi.org/10.1016/1043-4666(94)90064-7
  8. Palmer, R. M., Ashton, D. S. and Moncada, S. : Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664 (1988). https://doi.org/10.1038/333664a0
  9. Kubes, P. : Inducible nitric oxide synthase; a little bit of good in all of us. Gut 7, 6 (2000).
  10. Kawamata, H., Ochiai, H., Mantani, N. and Terasawa, K. : Enhanced expression of inducible nitric oxide synthase by Juzen-taiho-to in LPS-activated RAW 264.7cells, a murine macrophage cell line. Am. J. Chin. Med. 28, 217 (2000). https://doi.org/10.1142/S0192415X0000026X
  11. Lee, B. G., Kim, S. H., Zee, O. P., Lee, K. R., Lee, H. Y., Han, J. W. and Lee, H. W. : Suppression of inducible nitric oxide synthase expression in RAW 264.7 macrophages by twocarboline alkaloids extracted from Melia azedarach. Eur. J. Pharmacol. 406, 301 (2000). https://doi.org/10.1016/S0014-2999(00)00680-4
  12. Seo, W. G., Pae, H. O., Oh, G. S., Chai, K. Y., Yun, Y. G., Kwon, T. O. and Chung, H. T. : Inhibitory effect of ethyl acetate fraction from Cudrania tricuspidata on the expression of nitric oxide synthase gene in RAW 264.7 macrophages stimulated with interferon-and lipopolysaccharide. Gen. Pharmacol. 35, 21 (2000). https://doi.org/10.1016/S0306-3623(01)00086-6
  13. Chiou, W. F., Chou, C. J. and Chen, C. F. : Camptothecin suppresses nitric oxide biosynthesis in RAW 264.7 macrophages. Life Sci. 69, 625 (2001). https://doi.org/10.1016/S0024-3205(01)01154-7
  14. Seo, W. G., Pae, H. O., Oh, G. S., Kim, N. Y., Kwon, T. O., Shin, M. K., Chai, K. Y. and Chung, H. T. : The aqueous extract of Rhodiola sachalinensis root enhances the expression of inducible nitric oxide synthase gene in RAW264.7 macrophages. J. Ethnopharmacol. 76, 119 (2001). https://doi.org/10.1016/S0378-8741(01)00220-3
  15. Yoon, H. J., Moon, M. E., Park, H. S., Im, S. Y., Lee, J. H. and Kim, Y. H. : Effects of Chitosanoligosaccharide on the C. albicans-induced inflammatory effect in mice and RAW 264.7 macrophage cells. J. Chitin Chitosan. 12, 15 (2007)
  16. Lee, A. K., Sung, S. H., Kim, Y. C. and Kim, S. G. : Inhibition of lipopolysaccharide-inducible nitric oxide synthase, TNF-$\alpha$ and COX-2 expression by sauchinone effects on I-Ba phosphorylation, C/EBP and AP-1 activation. British J. Pharmacol. 139, 11 (2003). https://doi.org/10.1038/sj.bjp.0705231
  17. Papayianni, A. : Cytokines, growth factors, and other inflammatory mediators in glomerulonephritis. Ren. Fail. 18, 725 (1996). https://doi.org/10.3109/08860229609047702
  18. Delgado, A. V., McManus, A. T. and Chambers, J. P. : Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37, 355 (2003). https://doi.org/10.1016/j.npep.2003.09.005
  19. Hibi, M., Nakajima, K. and Hirano, T. : IL-6 cytokine family and signal transduction: a model of the cytokine system. J. Mol. Med. 74, 1 (1996). https://doi.org/10.1007/BF00202068
  20. Hirano, T., Matsuda, T. and Nakajima, K. : Signal transduction through gp130 that is shared among the receptors for the interleukin 6 related cytokine subfamily. Stem Cells 12, 262 (1994). https://doi.org/10.1002/stem.5530120303
  21. Van Snick, J. : Interleukin-6 an overview. Annu. Rev. Immunol. 8, 253 (1990). https://doi.org/10.1146/annurev.iy.08.040190.001345
  22. Chen, F., Castranova, V. and Shi, X. : New insights into the role of nuclear factor-kappaB in cell growth regulation. Am. J. Pathol. 159, 387 (2001). https://doi.org/10.1016/S0002-9440(10)61708-7
  23. Garrington, T. P. and Johnson, G. L. : Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Cell. Biol. 11, 211 (1999). https://doi.org/10.1016/S0955-0674(99)80028-3
  24. Seo, J. H., Lim, J. W., Kim, H. and Kim, K. H. : Helicobacter pylori in a Korean isolate activates mitogen-activated protein kinases. AP-1 and NF-kappaB and induces chemokine expression in gastric epithelial AGS cells. Lab. Invest. 84, 49 (2004). https://doi.org/10.1038/labinvest.3700010