• Title/Summary/Keyword: $MoS_2$ nanoparticles

Search Result 23, Processing Time 0.03 seconds

Facile Synthesis of MoS2-C60 Nanocomposites and Their Application to Catalytic Reduction and Photocatalytic Degradation

  • Li, Jiulong;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.286-300
    • /
    • 2016
  • $MoS_2$ precursors were synthesized by reacting thioacetamide ($C_2H_5NS$) with sodium molybdate dihydrate ($Na_2MoO_4{\cdot}2H_2O$) in aqueous HCl solution. $MoS_2$ nanoparticles were prepared from dried $MoS_2$ precursors by calcination in an electric furnace at $700^{\circ}C$ for 2 h under an inert argon atmosphere. $MoS_2-C_{60}$ nanocomposites were obtained by heating $MoS_2$ nanoparticles and fullerene ($C_{60}$) together in an electric furnace at $700^{\circ}C$ for 2 h. Their morphological and the structural properties were characterized by powder X-ray diffraction and scanning electron microscopy. The $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were used as catalysts in the reductions of 2-, 3-, and 4-nitrophenol in the presence of sodium borohydride. The photocatalytic activities of the $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were evaluated in the degradation of organic dyes (brilliant green, methylene blue, methyl orange, and rhodamine B) under ultraviolet light (254 nm).

Optimization of Sonocatalytic Orange II Degradation on MoS2 Nanoparticles using Response Surface Methodology

  • Jiulong Li;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.58 no.4
    • /
    • pp.191-200
    • /
    • 2023
  • In this study, MoS2 nanoparticles were synthesized and analyzed through powder X-ray diffraction, Raman, ultraviolet-visible, and X-ray photoelectron spectroscopies. The surface morphologies of the as-synthesized MoS2 nanoparticles were investigated through scanning and transmission electron microscopies. The sonocatalytic activity of the MoS2 nanoparticles toward Orange II removal was evaluated by utilizing a Box-Behnken design for response surface methodology in the experimental design. The sonocatalyst dosage, Orange II dye concentration, and ultrasound treatment time were optimized to be 0.49 g/L, 5 mg/L, and 150 min, respectively. The maximum efficiency of Orange II degradation on MoS2 nanoparticles was achieved, with a final average value of 82.93%. Further, the results of a kinetics study on sonocatalytic Orange II degradation demonstrated that the process fits well with a pseudo-first-order kinetic model.

Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries (Mo2C/Mo2N 나노 입자와 환원된 그래핀 옥사이드가 복합된 나노 섬유 중간층이 적용된 리튬-황 전지)

  • Lee, Jae Seob;Yang, Ji Hoon;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.574-581
    • /
    • 2022
  • Nanofibers comprising reduced graphene oxide (rGO) and Mo2C/Mo2N nanoparticles (Mo2C/Mo2N rGO NFs) were prepared for a functional interlayer of Li-S batteries (LSBs). The well-dispersed Mo2C and Mo2N nanoparticles in the nanofiber structure served as active polar sites for efficient immobilization of dissolved lithium polysulfide. The rGO nanosheets in the structure also provide conductive channels for fast ion/electron transport during charging-discharging and ensured reuse of lithium polysulfide during redox reactions through a fast charge transfer process. As a result, the cell assembled with Mo2C/Mo2N rGO NFs-coated separator and pure sulfur electrode (70 wt% of sulfur content and 2.1 mg cm-2 of sulfur loading) showed a stable discharge capacity of 476 mA h g-1 after 400 charge-discharge cycles at 0.1 C. Furthermore, it exhibited a discharge capacity of 574 mA h g-1 even at a high current density of 1.0 C. Therefore, we believe that the proposed unique nanostructure synthesis strategy could provide new insights into the development of sustainable and highly conductive polar materials as functional interlayers for high performance LSBs.

Few-Layered MoS2 Nanoparticles Loaded TiO2 Nanosheets with Exposed {001} Facets for Enhanced Photocatalytic Activity

  • Chen, Chujun;Xin, Xia;Zhang, Jinniu;Li, Gang;Zhang, Yafeng;Lu, Hongbing;Gao, Jianzhi;Yang, Zhibo;Wang, Chunlan;He, Ze
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850129.1-1850129.10
    • /
    • 2018
  • To improve the high charge carrier recombination rate and low visible light absorption of {001} facets exposed $TiO_2$ [$TiO_2(001)$] nanosheets, few-layered $MoS_2$ nanoparticles were loaded on the surfaces of $TiO_2(001)$ nanosheets by a simple photodeposition method. The photocatalytic activities towards Rhodamine B (RhB) were investigated. The results showed that the $MoS_2-TiO_2(001)$ nanocomposites exhibited much enhanced photocatalytic activities compared with the pure $TiO_2(001)$ nanosheets. At an optimal Mo/Ti molar ratio of 25%, the $MoS_2-TiO_2(001)$ nanocomposites displayed the highest photocatalytic activity, which took only 30 min to degrade 50 mL of RhB (50 mg/L). The active species in the degradation reaction were determined to be $h^+$ and $^{\bullet}OH$ according to the free radical trapping experiments. The reduced charge carrier recombination rate, enhanced visible light utilization and increased surface areas contributed to the enhanced photocatalytic performances of the 25% $MoS_2-TiO_2(001)$ nanocomposites.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Promoting Photoelectrochemical Performance Through the Modulation of MoS2 Morphology (MoS2의 형상변조를 통한 광전기화학 성능 촉진)

  • Seo, Dong-Bum;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2022
  • The development of advanced materials to improve the efficiency of photoelectrochemical (PEC) water splitting paves the way for widespread renewable energy technologies. Efficient photoanodes with strong absorbance in visible light increases the effectiveness of solar energy conversion systems. MoS2 in a two-dimensional semiconductor that has excellent absorption performance in visible light and high catalytic activity, showing considerable potential as an agent of PEC water splitting. In this study, we successfully modulated the MoS2 morphology on indium tin oxide substrate by using the metalorganic chemical vapor deposition method, and applied the PEC application. The PEC photocurrent of the vertically grown MoS2 nanosheet structure significantly increased relative to that of MoS2 nanoparticles because of the efficient transfer of charge carriers and high-density active sites. The enhanced photocurrent was attributed to the efficient charge separation and improved light absorption of the MoS2 nanosheet structure. Meanwhile, the photocurrent property of thick nanosheets decreased because of the limit imposed by the diffusion lengths of carriers. This study proposes a valuable photoelectrode design with suitable nanosheet morphology for efficient PEC water splitting.

MoS2/Montmorillonite Nanocomposite: Preparation, Tribological Properties, and Inner Synergistic Lubrication

  • Cheng, Lehua;Hu, Enzhu;Chao, Xianquan;Zhu, Renfa;Hu, Kunhong;Hu, Xianguo
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850144.1-1850144.13
    • /
    • 2018
  • A nano-$MoS_2$/montmorillonite K-10 (K10) composite was prepared and characterized. The composite contains two types of 2H-$MoS_2$ nanoparticles. One is the hollow spherical $MoS_2$ with a size range of 75 nm, and the other is the spherical nano cluster of $MoS_2$ with a size range of 30 nm. The two kinds of nano-$MoS_2$ were formed via assembly of numerous $MoS_2$ nano-platelets with a size of ~10 nm. A tribological comparison was then made among nano-$MoS_2$/K10, K10, nano-$MoS_2$ and a mechanical mixture of K10 and nano-$MoS_2$. K10 reduced the wear but slightly increased the friction. Nano-$MoS_2$ remarkably reduced both friction and wear. The mechanical mixture demonstrated better wear resistance than nano-$MoS_2$, indicating a synergistic anti-wear effect of nano-$MoS_2$ and K10. The synergistic effect was reinforced using nano-$MoS_2$/K10 instead of the mechanical mixture. A part of the $MoS_2$ in the contact region always lubricated the friction pair, and the rest formed a tribofilm. K10 segregated the friction pair to alleviate the ablation wear but magnified the abrasive wear. S-$MoS_2$ protects K10 and they together function as both a lubricant and an isolating agent to reduce the ablation and abrasive wear.

Gas sensing properties of polyacrylonitrile/metal oxide nanofibrous mat prepared by electrospinning

  • Lee, Deuk-Yong;Cho, Jung-Eun;Kim, Ye-Na;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • Polyacrylonitrile(PAN)/metal oxide(MO) nanocomposite mats with a thickness of 0.12 mm were electrospun by adding 0 to 10 wt% of MO nanoparticles ($Fe_2O_3$, ZnO, $SnO_2$, $Sb_2O_3-SnO_2$) into PAN. Pt electrode was patterned on $Al_2O_3$ substrate by DC sputtering and then the PAN(/MO) mats on the Pt patterned $Al_2O_3$ were electrically wired to investigate the $CO_2$ gas sensing properties. As the MO content rose, the fiber diameter decreased due to the presence of lumps caused by the presence of MOs in the fiber. The PAN/2% ZnO mat revealed a faster response time of 93 s and a relatively short recovery of 54 s with a ${\Delta}R$ of 0.031 M${\Omega}$ at a $CO_2$ concentration of 200 ppm. The difference in sensitivity was not observed significantly for the PAN/MO fiber mats in the $CO_2$ concentration range of 100 to 500 ppm. It can be concluded that an appropriate amount of MO nanoparticles in the PAN backbone leads to improvement of the $CO_2$ gas sensing properties.

Characterization of a Novel MnS-ACF/TiO2 Composite and Photocatalytic Mechanism Derived from Organic Dye Decomposition

  • Zhu, Lei;Jo, Sun-Bok;Jo, Jung-Hwan;Ye, Shu;Ullah, Kefayat;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.139-144
    • /
    • 2014
  • Activated carbon fiber (ACF) was modified with MnS nanoparticles to prepare MnS-ACF, and it was employed for preparation of MnS-$ACF/TiO_2$ composites with titanium (IV) n-butoxide (TNB). The properties of MnS-$ACF/TiO_2$ composites were characterized by XRD, SEM, and EDX. EDX results showed the presence of C, O, and Ti as major elements and traces of the metal elements Mn and S. The photocatlytic activity was evaluated by degradation of methyl blue (MB) and methyl orange (MO) dye. The results demonstrated that as-prepared samples could effectively photodegrade MB and MO under UV irradiation. Subsequently, the decomposition of MB solution showed the combined effects of adsorptions by ACF and enhanced photocatalytic effect by $TiO_2$. Finally, the photocatalytic effect increased due to photo-induced-electron absorption effect by ACF and electron trap effect by comodified MnS nanoparticles.

Preparation of nanoparticles CuInSe2 absorber layer by a non-vacuum process of low cost cryogenic milling (저가의 cryogenic milling 비진공법을 이용한 나노입자 CuInSe2 광흡수층 제조)

  • Kim, Ki-Hyun;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Chalcopyrite material $CuInSe_2$ (CIS) is known to be a very prominent absorber layer for high efficiency thin film solar cells. Current interest in the photovoltaic industry is to identify and develop more suitable materials and processes for the fabrication of efficient and cost-effective solar cells. Various processes have been being tried for making a low cost CIS absorber layer, this study obtained the CIS nanoparticles using commercial powder of 6 mm pieces for low cost CIS absorber layer by high frequency ball milling and cryogenic milling. And the CIS absorber layer was prepared by paste coating using milled-CIS nanoparticles in glove box under inert atmosphere. The chalcopyrite $CuInSe_2$ thin films were successfully made after selenization at the substrate temperature of $550^{\circ}C$ in 30 min, CIS solar cell of Al/ZnO/CdS/CIS/Mo structure prepared under various deposition process such as evaporation, sputtering and chemical vapor deposition respectively. Finally, we achieved CIS nanoparticles solar cell of electric efficient 1.74 % of Voc 29 mV, Jsc 35 $mA/cm^2$ FF 17.2 %. The CIS nanoparticles-based absorber layers were characterized by using EDS, XRD and HRSEM.