DOI QR코드

DOI QR Code

Few-Layered MoS2 Nanoparticles Loaded TiO2 Nanosheets with Exposed {001} Facets for Enhanced Photocatalytic Activity

  • Chen, Chujun (School of Physics and Information Technology Shaanxi Normal University) ;
  • Xin, Xia (School of Physics and Information Technology Shaanxi Normal University) ;
  • Zhang, Jinniu (School of Physics and Information Technology Shaanxi Normal University) ;
  • Li, Gang (School of Physics and Information Technology Shaanxi Normal University) ;
  • Zhang, Yafeng (School of Physics and Information Technology Shaanxi Normal University) ;
  • Lu, Hongbing (School of Physics and Information Technology Shaanxi Normal University) ;
  • Gao, Jianzhi (School of Physics and Information Technology Shaanxi Normal University) ;
  • Yang, Zhibo (School of Physics and Information Technology Shaanxi Normal University) ;
  • Wang, Chunlan (School of Science, Xi'an Polytechnic University) ;
  • He, Ze (School of Physics and Information Technology Shaanxi Normal University)
  • Received : 2018.07.18
  • Accepted : 2018.10.05
  • Published : 2018.11.30

Abstract

To improve the high charge carrier recombination rate and low visible light absorption of {001} facets exposed $TiO_2$ [$TiO_2(001)$] nanosheets, few-layered $MoS_2$ nanoparticles were loaded on the surfaces of $TiO_2(001)$ nanosheets by a simple photodeposition method. The photocatalytic activities towards Rhodamine B (RhB) were investigated. The results showed that the $MoS_2-TiO_2(001)$ nanocomposites exhibited much enhanced photocatalytic activities compared with the pure $TiO_2(001)$ nanosheets. At an optimal Mo/Ti molar ratio of 25%, the $MoS_2-TiO_2(001)$ nanocomposites displayed the highest photocatalytic activity, which took only 30 min to degrade 50 mL of RhB (50 mg/L). The active species in the degradation reaction were determined to be $h^+$ and $^{\bullet}OH$ according to the free radical trapping experiments. The reduced charge carrier recombination rate, enhanced visible light utilization and increased surface areas contributed to the enhanced photocatalytic performances of the 25% $MoS_2-TiO_2(001)$ nanocomposites.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Central Universities, Xi'an Polytechnic University

References

  1. P. A. DeSario, J. J. Pietron, T. H. Brintlinger, M. McEntee, J. F. Parker, O. Baturina, R. M. Stroud and D. R. Rolison, Nanoscale 9, 11720 (2017). https://doi.org/10.1039/C7NR04805J
  2. B. Singh, G. Kaur, P. Singh, K. Singh, J. Sharma, M. Kumar, R. Bala, R. Meena, S. K. Sharma and A. Kumar, New J. Chem. 41, 11640 (2017). https://doi.org/10.1039/C7NJ02509B
  3. L. Wang, W. Y. Song, J. L. Deng, H. L. Zheng, J. Liu, Z. Zhao, M. L. Gao and Y. C. Wei, Nanoscale 10, 6024 (2018). https://doi.org/10.1039/C7NR09274A
  4. H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q. Lu, Nature 453, 638 (2008). https://doi.org/10.1038/nature06964
  5. X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie and L. S. Zheng, J. Am. Chem. Soc. 131, 3152 (2009). https://doi.org/10.1021/ja8092373
  6. X. Yuan, B. F. Gao, J. X. Shi, Y. L. Chen, B. Z. Lin and Z. J. Gu, Mater. Lett. 128, 167 (2014). https://doi.org/10.1016/j.matlet.2014.04.137
  7. L. Q. Ye, J. Mao, J. Y. Liu, Z. Jiang, T. Y. Peng and L. Zan, J. Mater. Chem. A 1, 10532 (2013). https://doi.org/10.1039/c3ta11791j
  8. F. Zuo, K. Bozhilov, R. J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen and P. Y. Feng, Angew. Chem. Int. Ed. 51, 6223 (2012). https://doi.org/10.1002/anie.201202191
  9. P. Bouras, E. Stathatos and P. Lianos, Appl. Catal. B: Environ. 73, 51 (2007). https://doi.org/10.1016/j.apcatb.2006.06.007
  10. L. A. Gu, J. Y. Wang, H. Cheng, Y. Z. Zhao, L. F. Liu and X. J. Han, ACS Appl. Mater. Interfaces 5, 3085 (2013). https://doi.org/10.1021/am303274t
  11. S. Y. Zhu, S. J. Liang, Q. Gu, L. Y. Xie, J. X. Wang, Z. X. Ding and P. Liu, Appl. Catal. B: Environ. 119-120, 146 (2012). https://doi.org/10.1016/j.apcatb.2012.02.020
  12. M. Wang, Q. T. Han, Y. Zhou, P. Li, W. G. Tu, L. Q. Tang and Z. G. Zou, RSC Adv. 6, 81510 (2016). https://doi.org/10.1039/C6RA14821B
  13. M. Diak, E. Grabowska and A. Zaleska, Appl. Surf. Sci. 347, 275 (2015). https://doi.org/10.1016/j.apsusc.2015.04.103
  14. J. Q. Yan, G. J. Wu, W. L. Dai, N. J. Guan and L. D. Li, ACS Sustain. Chem. Eng. 2, 1940 (2014). https://doi.org/10.1021/sc500331k
  15. H. Shi, S. Zhang, X. P. Zhu, Y. Liu, T. Wang, T. Jiang, G. H. Zhang and H. G. Duan, ACS Appl. Mater. Interfaces 9, 36907 (2017). https://doi.org/10.1021/acsami.7b12470
  16. S. W. Han, H. Kwon, S. K. Kim, S. Ryu, W. S. Yun, D. H. Kim, J. H. Hwang, J.-S. Kang, J. Baik, H. J. Shin and S. C. Hong, Phys. Rev. B 84, 045409 (2011). https://doi.org/10.1103/PhysRevB.84.045409
  17. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. W. Chen and M. Chhowalla, Nano Lett. 11, 5111 (2011). https://doi.org/10.1021/nl201874w
  18. B. B. Sheng, J. S. Liu, Z. Q. Li, M. H. Wang, K. J. Zhu, J. H. Qiu and J. Wang, Mater. Lett. 144, 153 (2015). https://doi.org/10.1016/j.matlet.2015.01.056
  19. F. P. Yang, Z. Y. Zhang, Y. N. Wang, M. Z. Xu, W. Zhao, J. F. Yan and C. Chen, Mater. Res. Bull. 87, 119 (2017). https://doi.org/10.1016/j.materresbull.2016.11.029
  20. W. H. Liu, Q. Z. Hu, F. Mo, J. J. Hu, Y. Feng, H. W. Tang, H. N. Ye and S. D. Miao, J. Mol. Catal. A: Chem. 395, 322 (2014). https://doi.org/10.1016/j.molcata.2014.08.024
  21. Y. J. Yuan, D. Q. Chen, J. S. Zhong, L. X. Yang, J. J. Wang, M. J. Liu, W. G. Tu, Z. T. Yu and Z. G. Zou, J. Mater. Chem. A 5, 15771 (2017). https://doi.org/10.1039/C7TA04410K
  22. Y. J. Yuan, Y. Yang, Z. J. Li, D. Q. Chen, S. T. Wu, G. L. Fang, W. F. Bai, M. Y. Ding, L. X. Yang, D. P. Cao, Z. T. Yu and Z. G. Zou, ACS Appl. Energy Mater. 1, 1400 (2018). https://doi.org/10.1021/acsaem.8b00030
  23. Y. J. Yuan, G. L. Fang, D. Q. Chen, Y. W. Huang, L. X. Yang, D. P. Cao, J. J. Wang, Z. T. Yu and Z. G. Zou, Dalton Trans. 47, 5652 (2018). https://doi.org/10.1039/C8DT00356D
  24. Y. J. Yuan, Z. J. Ye, H. W. Lu, B. Hu, Y. H. Li, D. Q. Chen, J. S. Zhong, Z. T. Yu and Z. G. Zou, ACS Catal. 6, 532 (2016). https://doi.org/10.1021/acscatal.5b02036
  25. J. Zhang, L. H. Huang, Z. D. Lu, Z. L. Jin, X. Y. Wang, G. L. Xu, E. P. Zhang, H. B. Wang, Z. Kong, J. H. Xi and Z. G. Ji, J. Alloys Compd. 688, 840 (2016). https://doi.org/10.1016/j.jallcom.2016.07.263
  26. J. Zhang, L. L. Zhang, W. P. Yu, F. Jiang, E. P. Zhang, H. B. Wang, Z. Kong, J. H. Xi and Z. G. Ji, J. Am. Ceram. Soc. 100, 5274 (2017). https://doi.org/10.1111/jace.15046
  27. J. Zhang, L. L. Zhang, X. M. Ma and Z. G. Ji, Appl. Surf. Sci. 430, 424 (2018). https://doi.org/10.1016/j.apsusc.2017.07.056
  28. C. Liu, H. B. Lu, J. N. Zhang, Z. B. Yang, G. Q. Zhu, F. Yin, J. Z. Gao, C. J. Chen and X. Xin, J. Alloys Compd. 705, 112 (2017). https://doi.org/10.1016/j.jallcom.2017.02.118
  29. J. Zhang, J. H. Xi and Z. G. Ji, J. Mater. Chem. 22, 17700 (2012). https://doi.org/10.1039/c2jm32391e
  30. J. Zhang, X. M. Ma, L. L. Zhang, Z. D. Lu, E. P. Zhang, H. B. Wang, Z. Kong, J. H. Xi and Z. G. Ji, J. Phys. Chem. C 121, 6133 (2017). https://doi.org/10.1021/acs.jpcc.7b00049
  31. Z. F. Jiang, X. M. Lv, D. L. Jiang, J. M. Xie and D. J. Mao, J. Mater. Chem. A 1, 14963 (2013). https://doi.org/10.1039/c3ta13248j
  32. S. P. Shi, D. Q. Gao, B. R. Xia, P. T. Liu and D. S. Xue, J. Mater. Chem. A 3, 24414 (2015). https://doi.org/10.1039/C5TA08520A
  33. H. G. Fan, R. Wu, H. Y. Liu, X. Yang, Y. F. Sun and C. Chen, J. Mater. Sci. 53, 10302 (2018). https://doi.org/10.1007/s10853-018-2266-8
  34. D. Z. Wang, X. Y. Zhang, S. Y. Bao, Z. T. Zhang, H. Fei and Z. Z. Wu, J. Mater. Chem. A 5, 2681 (2016).
  35. M. R. Saber, G. Khabiri, A. A. Maarouf, M. Ulbricht and A. G. Khalil, RSC Adv. 8, 26364 (2018). https://doi.org/10.1039/C8RA05387A
  36. M. M. Wang, J. Z. Gao, G. Q. Zhu, N. Li, R. L. Zhu, X. M. Wei, P. Liu and Q. M. Guo, RSC Adv. 6, 106615 (2016). https://doi.org/10.1039/C6RA21350B
  37. L. Liu, Y. H. Qi, J. R. Lu, S. L. Lin, W. J. An, J. S. Hu, Y. H. Liang and W. Q. Cui, RSC Adv. 5, 99339 (2015). https://doi.org/10.1039/C5RA19929H
  38. J. G. Yu, J. X. Low, W. Xiao, P. Zhou and M. Jaroniec, J. Am. Chem. Soc. 136, 8839 (2014). https://doi.org/10.1021/ja5044787