• Title/Summary/Keyword: $Mn^{3+}$

Search Result 4,821, Processing Time 0.036 seconds

Adsorption of Mn on iron minerals and calcium compounds to reduce Mn(II) toxicity (2가 망간의 독성 저감을 위해 철산화물과 칼슘화합물을 이용한 망간 흡착)

  • Hyo Kyung Jee;Jin Hee Park
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.457-462
    • /
    • 2022
  • Manganese (Mn) exists in various oxidation states and Mn(II) is the most mobile species of Mn, which is toxic to plants and limits their growth. Therefore, the purpose of this study was to reduce Mn toxicity by immobilizing Mn using various adsorbents including iron oxides and calcium compounds. Ferrihydrite, schwertmannite, goethite were synthesized, which was confirmed by X-ray diffraction. Hematite was purchased and used as Mn adsorbent. Calcium compounds such as CaNO3, CaSO4, and CaCO3 were used to increase pH and oxidize Mn. For Mn adsorption, Mn(II) solution was reacted with four iron oxides, CaNO3, CaSO4, and CaCO3 for 24 hours, filtered, and the remaining Mn concentrations in the solution were analyzed by inductively coupled plasma optical emission spectroscopy. The adsorption rate and adsorption isotherm were calculated. Among iron oxides, the adsorption rate was highest for hematite followed by ferrihyrite, but goethite and schwertmannite did not adsorb Mn. In the case of calcium compounds, the adsorption rate was high in the order of CaCO3>CaNO3>CaSO4. In conclusion, treatment of CaCO3 was the most effective in reducing Mn toxicity by increasing pH.

Effect of Fe, Mn Content on the Tensile Property of Al-4 wt%Mg-0.9 wt%Si Alloy System for High Pressure Die Casting (고압 금형 주조용 Al-4 wt%Mg-0.9 wt%Si계 합금의 인장특성에 미치는 Fe, Mn함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.103-112
    • /
    • 2013
  • Effect of Fe and Mn contents on the tensile properties of Al-4 wt%Mg-0.9 wt%Si alloy system has been studied. Common phases of Al-4 wt%Mg-0.9 wt%Si alloy system were ${\alpha}$-Al, $Mg_2Si$, ${\alpha}-Al_{12}(Fe,Mn)_3Si$ and ${\beta}-Al_5FeSi$. As Fe content of Al-4 wt%Mg-0.9 wt%Si alloy system increased from 0.15 wt% to above 0.3 wt%, ${\beta}-Al_5FeSi$ compound appeared. When Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, morphology of plate shaped ${\beta}-Al_5FeSi$ compound changed to chinese script ${\alpha}-Al_{12}(Fe,Mn)_3Si$. As Fe content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Mn alloy increased from 0.15 wt% to 0.4 wt%, tensile strength of the as-cast alloy decreased from 191 MPa to 183 MPa and, elongation of the alloy also decreased from 8.0% to 6.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with low Mn/Fe ratio of the alloy. However, when Mn content of Al-4 wt%Mg-0.9 wt%Si-0.3 wt%Fe alloy increased from 0.3 wt% to 0.5 wt%, tensile strength of as-cast alloy increased from 181 MPa to 194 MPa and, elongation of the alloy increased from 6.8% to 7.0%. These improvements attribute to the morphology change from ${\beta}-Al_5FeSi$ phase to chinese script, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ phase shape-modified from with high Mn/Fe ratio of the alloy.

Magnetic Susceptibility of the Single Crystal MnF2(1.5% EuF3) (단결정 MnF2(1.5% EuF3)의 자기 감수율)

  • Lee, Jun-Young;Nahm, Kyun;Kim, Chul-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.261-263
    • /
    • 2006
  • In order to investigate the magnetic properties of Eu ions in the single crystal $MnF_2$, the temperature dependent magnetic susceptibilities of the antiferromagnetic $MnF_2$ and the single crystal $MnF_2$(1.5% $EuF_3$) with the rutile structures were measured in the temperature range from 4K to 300K. The detailed analysis of the measured susceptibilities showed that the magnetic susceptibility by the doping of the small amount $EuF_3$ in the antiferromagnetic single crystal $MnF_2$ follows the antiferromagnetic Curie-Weiss law with the negative paramagnetic Curie temperature similarly as in $MnF_2$. It was also found that Eu ion has +3 valence. This solves the long standing discrepancy on this problem.

Mechanical properties of $Al_2O_3/Mo/MnO_2$ composite ($Al_2O_3/Mo/MnO_2$ 복합재료의 기계적 특성)

  • Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.4
    • /
    • pp.172-179
    • /
    • 2006
  • When $Al_2O_3-MoO_3$ mixture is reduced, $MoO_3$ is only reduced to Mo at $900^{\circ}C$. But a compound between $Al_2O_3$ and Mo is not formed up to $1300^{\circ}C$. In the case of $Al_2O_3-MoO_3-MnO_2$ mixture, an intermediate compound $Mn_2Mo_3O_8$ is firstly formed at $900^{\circ}C$ and changes to $MnAl_2O_4$ at $1100^{\circ}C{\sim}1300^{\circ}C$. $Al_2O_3/Mo/MnO_2$ composite are manufactured by a selective reduction process in which Mo is only reduced in the powder mixture of $Al_2O_3,\;MoO_3\;and\;MnO_2$ oxide. For $Al_2O_3/Mo$ composite, the average grain size was not changed with increasing Mo content because of inhibition of grain growth of $Al_2O_3$ matrix in the presence of Mo particles. Fracture strength increased with increasing Mo content due to phenomenon of grain growth inhibition of $Al_2O_3$ matrix. Hardness decreased because of a lower hardness value of Mo, whereas fracture toughness increased. For $Al_2O_3,\;Mo\;and\;MnO_2$ composite, grain growth was facilitated by MnOB and it showed a lower fracture strength because of grain growth effect with increasing Mo and $MnO_2$ content. Hardness decreased because of the grain growth of matrix and coalesced Mo particles to be located in grain boundary, whereas fracture toughness increased.

High Temperature Electrical Conductivity of Perovskite La0.98Sr0.02MnO3 (페로프스카이트 $La_{0.98}Sr_{0.02}MnO_3$의 고온전기특성)

  • 김명철;박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.900-904
    • /
    • 1992
  • High temperature electrical conductivity was measured for perovskite La0.98Sr0.02MnO3 at 200~130$0^{\circ}C$ as a function of Po2 and 1/T. Perovskite La1-xSrxMnO3 system is the typical oxygen electrode in solid oxide fuel cell (SOFC). Acetate precursors were used for the preparation of mixed water solution and the calcined powders were reacted with Na2CO3 flux in order to obtain highly reactive powders of perovskite La0.98Sr0.02MnO3. The relative density was greatly increased above 90% because of the homogeneous sintering. From the conductivity ($\sigma$)-temperature and conductivity-Po2 at constant temperature, the defect structure of La0.98Sr0.02MnO3 was discussed. From the slope of 1n($\sigma$) vs 1/T, the activation energy of 0.069 and 0.108eV were evaluated for above 40$0^{\circ}C$, respectively. From the relationship between $\sigma$ and Po2, it was found that the decomposition of La0.98Sr0.02MnO3 was occurred at 10-15.5 atm(97$0^{\circ}C$) and 10-11 atm(125$0^{\circ}C$). It is supposed that the improvement of p-type conductivity may be leaded by the increase of Mn4+ concentration through the substitution of divalent/monovalent cations for La site in LaMnO3.

  • PDF

LiMnBO3/C: A Potential Cathode Material for Lithium Batteries

  • Aravindan, V.;Karthikeyan, K.;Amaresh, S.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1506-1508
    • /
    • 2010
  • $LiMnBO_3$ was successfully synthesized by a solid-state reaction method both with and without a carbon coating. Adipic acid was used as source material for the carbon coating. $LiMnBO_3$ was composed of many small polycrystalline particles with a size of about 50 - 70 nm, which showed a very even particle morphology and highly ordered crystalline particulates. Whereas the carbon coated $LiMnBO_3$ was well covered by mat-like, fine material consisting of amorphous carbon derived from the carbonization of adipic acid during the synthetic process. Carbon coated cell exhibited improved and stable discharge capacity profile over the untreated. Two cells delivered an initial discharge capacity of 111 and 58 mAh/g for $LiMnBO_3$/C and $LiMnBO_3$, respectively. Carbon coating on the surface of the $LiMnBO_3$ drastically improved discharge capacity due to the improved electric conductivity in the $LiMnBO_3$ material.

Investigation of Photoelectrochemical Water Splitting for Mn-Doped In2O3 Film

  • Sun, Xianke;Fu, Xinhe;You, Tingting;Zhang, Qiannan;Xu, Liuyang;Zhou, Xiaodong;Yuan, Honglei;Liu, Kuili
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.733-738
    • /
    • 2018
  • Undoped and Mn-doped $In_2O_3$ films were prepared by radiofrequency magnetron sputtering technique. The effects of Mn doping on the structural and optical properties of as-prepared films were investigated using X-ray diffraction, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. Mn doping can enhance the intensity of (222) peak in Mn-doped $In_2O_3$ thin film, indicating Mn dopant promotes preferred orientation of crystal growth along (222) plane. XPS analyses revealed that the doped Mn ions exist at + 2 oxidation states, substituting for the $In^{3+}$ sites in the $In_2O_3$ lattice. UV-Vis measurements show that the optical band gap $E_g$ decreases from 3.33 to 2.87 eV with Mn doping in $In_2O_3$, implying an increasing sp-d exchange interaction in the film. Our work demonstrates a practical means to manipulate the band gap energy of $In_2O_3$ thin film via Mn impurity doping, and significantly improves the photoelectrochemical activity.

Phase Change of Nanorod-Clustered $MnO_2$ by Hydrothermal Reaction Conditions and the Lithium-ion Battery Cathode Properties of $LiMn_2O_4$ Prepared from the $MnO_2$ (수열합성 조건에 따른 나노로드 클러스터형 $MnO_2$의 상변화와 이를 이용한 $LiMn_2O_4$의 리튬이온전지 양전극 특성)

  • Kang, Kun-Young;Choi, Min Gyu;Lee, Young-Gi;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.541-547
    • /
    • 2011
  • Nanorod-clustered $MnO_2$ precursors with ${\alpha}$-, ${\beta}$-, and ${\gamma}$-phases are synthesized by hydrothermal reaction of $MnSO_45H_2O$ and $(NH_4)S_2O_8$. The formation of nanorod-clustered ${\beta}-MnO_2$ is particularly confirmed under the conditions of high reactant concentration and hydrothermal reaction at $150^{\circ}C$. The spinel $LiMn_2O_4$ nanorod-clusters are also prepared by lithiating the $MnO_2$ precursors, varying the concentration of lithiating agent ($LiC_3H_3O_2{\cdot}2H_2O$) and heat treatment temperature, and characterized for use as cathode material of lithium-ion batteries. As a result, the nanorod-clustered $LiMn_2O_4$ prepared from the ${\beta}-MnO_2$ at higher $LiC_3H_3O_2{\cdot}2H_2O$ concentration and the annealing at $800^{\circ}C$ is proven to show the cubic spinel structure and to achieve the high initial discharge capacity of 120 mAh/g.

Element Dispersion by the Wallrock Alteration of Janggun Lead-Zinc-Silver Deposit (장군 연-아연-은 광상의 모암변질에 따른 원소분산)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.45 no.6
    • /
    • pp.623-641
    • /
    • 2012
  • The Janggun lead-zinc-silver deposit is hydrothermal-metasomatic deposit. We have sampled wallrock, hydrother-maly-altered rock and lead-zinc-silver ore vein to study the element dispersion during wallrock alteration. The hydrothermal alteration that is remarkably recognized at this deposit consists of rhodochrositization and dolomitization. Wallrock is dolomite and limestone that consisit of calcite, dolomite, quartz, phlogopite and biotite. Rhodochrosite zone occurs near lead-zinc-silver ore vein and include mainly rhodochrosite with amounts of calcite, dolomite, kutnahorite, arsenopyrite, pyrite, chalcopyrite, sphalerite, galena and stannite. Dolomite zone occurs far from lead-zinc-silver ore vein and is composed of mainly dolomite and minor calcite, rhodochrosite, pyrite, sphalerite, chalcopyrite, galena and stannite. The correlation coefficients among major, trace and rare earth elements during wallrock alteration show high positive correlations(dolomite and limestone = $Fe_2O_3(T)$/MnO, Ga/MnO and Rb/MnO), high negative correlations(dolomite = MgO/MnO, CaO/MnO, $CO_2$/MnO, Sr/MnO; limestone = CaO/MnO, Sr/MnO). Remarkable gain elements during wallrock alteration are $Fe_2O_3(T)$, MnO, As, Au, Cd, Cu, Ga, Pb, Rb, Sb, Sc, Sn and Zn. Remarkable loss elements are CaO, $CO_2$, MgO and Sr. Therefore, elements(CaO, $CO_2$, $Fe_2O_3(T)$, MgO, MnO, Ga, Pb, Rb, Sb, Sn, Sr and Zn) represent a potential tools for exploration in hydrothermal-metasomatic lead-zinc-silver deposits.

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Jang, Hyun-Tae;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.537-544
    • /
    • 2011
  • This work was conducted to investigate the oxidation characteristics of methane having the highest ignition temperature among the other hydrocarbon gases using transition metal catalysts. The catalyst used for methane oxidation was manganese oxide having a various oxidation number, such as MnO, $MnO_2$, $Mn_2O_3$, $Mn_3O_4$, $Mn_4O_5$. The manganese oxide(MnxOy) catalyst is impregnated on $TiO_2$, $Al_2O_3$ for methane oxidation. To enhanced both of activity and life time of catalysts, Ni and Co was used as a promoter. In this study, various co-catalysts were synthesized by using excess wet impregnation method. The effect of reaction temperature and space velocity was measured to calculate the activity of catalysts such as, activation energy of $T_{50}$, and $T_{90}$. The life time of bi-metallic manganese mixture, such as Mn-Co and Mn-Ni catalysts, were increased more 10 % than manganese oxide catalyst, but activity of those was decreased slightly.