DOI QR코드

DOI QR Code

Adsorption of Mn on iron minerals and calcium compounds to reduce Mn(II) toxicity

2가 망간의 독성 저감을 위해 철산화물과 칼슘화합물을 이용한 망간 흡착

  • Hyo Kyung, Jee (Department of Agricultural Chemistry, Chungbuk University) ;
  • Jin Hee, Park (Department of Agricultural Chemistry, Chungbuk University)
  • Received : 2022.11.15
  • Accepted : 2022.12.15
  • Published : 2022.12.31

Abstract

Manganese (Mn) exists in various oxidation states and Mn(II) is the most mobile species of Mn, which is toxic to plants and limits their growth. Therefore, the purpose of this study was to reduce Mn toxicity by immobilizing Mn using various adsorbents including iron oxides and calcium compounds. Ferrihydrite, schwertmannite, goethite were synthesized, which was confirmed by X-ray diffraction. Hematite was purchased and used as Mn adsorbent. Calcium compounds such as CaNO3, CaSO4, and CaCO3 were used to increase pH and oxidize Mn. For Mn adsorption, Mn(II) solution was reacted with four iron oxides, CaNO3, CaSO4, and CaCO3 for 24 hours, filtered, and the remaining Mn concentrations in the solution were analyzed by inductively coupled plasma optical emission spectroscopy. The adsorption rate and adsorption isotherm were calculated. Among iron oxides, the adsorption rate was highest for hematite followed by ferrihyrite, but goethite and schwertmannite did not adsorb Mn. In the case of calcium compounds, the adsorption rate was high in the order of CaCO3>CaNO3>CaSO4. In conclusion, treatment of CaCO3 was the most effective in reducing Mn toxicity by increasing pH.

망간은 다양한 산화수로 존재하며 Mn(II)은 망간 중 가장 이동성이 높은 종으로 식물에 독성을 미치며 성장을 제한한다. 따라서, 본 연구의 목적은 다양한 흡착제를 이용하여 망간을 안정화함으로써 망간의 독성을 저감시키는 것이다. Ferrihydrite, schwertmannite, goethite를 합성하여 XRD로 확인하였고 망간 흡착에 사용하였다. Hematite는 구매하여 망간 흡착제로 사용하였다. CaNO3, CaSO4, CaCO3와 같은 칼슘 화합물은 pH를 높이고 망간을 산화시키기 위해 사용하였다. 망간의 흡착을 위해 다양한 농도의 Mn(II) 용액을 4가지 철산화물, CaNO3, CaSO4, CaCO3와 24시간 반응시킨 후 여과하여 용액에 남아있는 망간 농도를 ICP-OES로 분석하고 망간의 흡착율과 흡착등온식을 계산하였다. 그 결과, 철 산화물 중에서는 hematite에 의한 망간 흡착율이 가장 높았으며 ferrihydrite가 다음으로 흡착율이 높았다. 칼슘 화합물의 경우 CaCO3>CaNO3>CaSO4 순으로 흡착율이 높았다. CaCO3은 hematite보다 높은 흡착율을 보였고 CaCO3를 처리하면 pH를 증가시켜 망간의 독성을 감소하는 데 가장 효과적일 것으로 판단된다.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2017R1C1B5075522).

References

  1. Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221(2): 131-147. doi: 10.1016/j.taap.2007.03.001 
  2. Lan S, Wang X, Xiang Q, Yin H, Tan W, Qiu G, Feng X (2017) Mechanisms of Mn (II) catalytic oxidation on ferrihydrite surfaces and the formation of manganese (oxyhydr) oxides. Geochim Cosmochim Acta 211: 79-96. doi: 10.1016/j.gca.2017.04.044 
  3. Li J, Jia Y, Dong R, Huang R, Liu P, Li X, Chen Z (2019) Advances in the mechanisms of plant tolerance to manganese toxicity. Int J Mol Sci 20(20): 5096. doi: 10.3390/ijms20205096 
  4. Horiguchi T (1988) Mechanism of manganese toxicity and tolerance of plants: IV. Effects of silicon on alleviation of manganese toxicity of rice plants. Soil Sci Plant Nutr 34(1): 65-73. doi: 10.1080/00380768.1988.10415580 
  5. Alam S, Akiha F, Kamei S, Imamul Huq SM, Kawai S (2005) Mechanism of potassium alleviation of manganese phytotoxicity in barley. J Plant Nutr 28(5): 889-901. doi: 10.1081/PLN-200055572 
  6. Alam S, Kodama R, Akiha F, Kamei S, Kawai S (2006) Alleviation of manganese phytotoxicity in barley with calcium. J Plant Nutr 29(1): 59-74. doi: 10.1080/01904160500416463 
  7. Silva AM, Cruz FLDS, Lima RMF, Teixeira MC, Leao VA (2010) Manganese and limestone interactions during mine water treatment. J Hazard Mater 181(1-3): 514-520. doi: 10.1016/j.jhazmat.2010.05.044 
  8. Giergiczny Z, Krol A (2008) Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites. J Hazard Mater 160(2-3): 247-255. doi: 10.1016/j.jhazmat.2008.03.007 
  9. Chen H, Liu R, Liu Z, Shu J, Tao C (2016) Immobilization of Mn and NH4+-N from electrolytic manganese residue waste. Environ Sci Pollut Res 23(12): 12352-12361. doi: 10.1007/s11356-016-6446-2 
  10. Sasaki K, Matsuda M, Hirajima T, Takano K, Konno H (2006) Immobilization of Mn (II) ions by a Mn-oxidizing fungus Paraconiothyrium sp.-like strain at neutral pHs. Mater Trans 47(10): 2457-2461. doi: 10.2320/matertrans.47.2457 
  11. Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32(3): 344-349. doi: 10.1021/es970421p 
  12. Luo Y, Ding J, Shen Y, Tan W, Qiu G, Liu F (2018) Symbiosis mechanism of iron and manganese oxides in oxic aqueous systems. Chem Geol 488: 162-170. doi: 10.1016/j.chemgeo.2018.04.030 
  13. Xie Y, Lu G, Tao X, Wen Z, Dang Z (2022) A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism. J Hazard Mater 422: 126952. doi: 10.1016/j.jhazmat.2021.126952 
  14. Hue NV, Mai Y (2002) Manganese toxicity in watermelon as affected by lime and compost amended to a Hawaiian acid Oxisol. HortScience 37(4): 656-661. doi: 10.21273/HORTSCI.37.4.656 
  15. Park JH, Han YS, Ahn JS (2016) Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream. Water Res 106: 295-303. doi: 10.1016/j.watres.2016.10.006 
  16. Mikutta C, Mikutta R, Bonneville S, Wagner F, Voegelin A, Christl I, Kretzschmar R (2008) Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization. Geochim Cosmochim Acta 72(4): 1111-1127. doi: 10.1016/j.gca.2007.11.035 
  17. Bigham JM, Carlson L, Murad EJAA (1994) Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities. Mineral Mag 58(393): 641-648  https://doi.org/10.1180/minmag.1994.058.393.14
  18. Schwertmann U (1984) The double dehydroxylation peak of goethite. Thermochim Acta 78(1-3): 39-46. doi: 10.1016/0040-6031(84)87130-0 
  19. Adegoke HI, AmooAdekola F, Fatoki OS, Ximba BJ (2014) Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean J Chem Eng 31(1): 142-154. doi: 10.1007/s11814-013-0204-7 
  20. Aksu Z (2001) Biosorption of reactive dyes by dried activated sludge: equilibrium and kinetic modelling. Biochem Eng J 7(1): 79-84. doi: 10.1016/S1369-703X(00)00098-X 
  21. Das S, Hendry MJ, Essilfie-Dughan J (2011) Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environ Sci Technol 45(1): 268-275. doi: 10.1021/es101903y 
  22. Williams AG, Scherer MM (2004) Spectroscopic evidence for Fe (II)- Fe (III) electron transfer at the iron oxide- water interface. Environ Sci Technol 38(18): 4782-4790. doi: 10.1021/es049373g 
  23. Horiguchi T (1987) Mechanism of manganese toxicity and tolerance of plants: II. Deposition of oxidized manganese in plant tissues. Soil Sci Plant Nutr 33(4): 595-606. doi: 10.1080/00380768.1987.10557608 
  24. Huang Y, Chen J, Sun Y, Wang H, Zhan J, Huang Y, Cui J (2022) Mechanisms of calcium sulfate in alleviating cadmium toxicity and accumulation in pak choi seedlings. Sci Total Environ 805: 150115. doi: 10.1016/j.scitotenv.2021.150115 
  25. Zhou J, Zhang M, Ji M, Wang Z, Hou H, Zhang J, Qian G (2020) Evaluation of heavy metals stability and phosphate mobility in the remediation of sediment by calcium nitrate. Water Environ Res 92(7): 1017-1026. doi: 10.1002/wer.1297