• Title/Summary/Keyword: $M_2X$(M = Cr)

Search Result 236, Processing Time 0.025 seconds

A Study on the Neutron Dose Distribution in Case of 10 MV X-rays Radiotherapy (10MV X선 방사선 치료 시 중성자 선량 분포에 관한 연구)

  • Park, Cheol-Soo;Lim, Cheong-Hwan;Jung, Hong-Ryang;Shin, Seong-Soo
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.415-417
    • /
    • 2008
  • This study is to measure the radiation dose of neutrons generated by the particle accelerator during X-ray (photon) treatment with a neutron detection method by using CR-39, and to research how the generation of neutrons may incur problems associated with radiation doses for patient treatment when using high energy photons for cancer treatment as a clinical application. The findings are summarized as follows : The results showed that average 0.35mSv was measured with exposure of 1Gy photon in case of fast neutron, 0.65mSv with exposure of 2Gy photon, 1.82mSv exposure of 5Gy, 0.26mSv with exposure of 1Gy photon in case of thermal neutron, 0.56mSv with exposure of 2Gy photon, and 1.23mSv with exposure of 5Gy of photon. By measuring the occurrence of neutron by using Wedge Filter, it has been confirmed that the occurrence of neutrons increased when using Wedge Filter. The results also showed that more neutrons were detected over the existing experiments when using an SRS Cone requiring high doses of radiation. Total 2.85mSv neutrons were found on the average with exposure of 5Gy photon in case of fast neutron and 1.37mSv neutrons were found on the average with exposure of 5Gy photon in case of thermal neutron. During the general treatment, about 1.6 times more neutrons over 5Gy photon were found in case of fast neutron and about 1.12 time more neutrons over 5Gy photon were found in case of thermal neutron.

  • PDF

Imaging Characteristics of Computed Radiography Systems (CR 시스템의 종류와 I.P 크기에 따른 정량적 영상특성평가)

  • Jung, Ji-Young;Park, Hye-Suk;Cho, Hyo-Min;Lee, Chang-Lae;Nam, So-Ra;Lee, Young-Jin;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.63-72
    • /
    • 2008
  • With recent advancement of the medical imaging systems and picture archiving and communication system (PACS), installation of digital radiography has been accelerated over past few years. Moreover, Computed Radiography (CR) which was well established for the foundation of digital x-ray imaging systems at low cost was widely used for clinical applications. This study analyzes imaging characteristics for two systems with different pixel sizes through the Modulation Transfer Function (MTF), Noise Power Spectrum (NPS) and Detective Quantum Efficiency (DQE). In addition, influence of radiation dose to the imaging characteristics was also measured by quantitative assessment. A standard beam quality RQA5 based on an international electro-technical commission (IEC) standard was used to perform the x-ray imaging studies. For the results, the spatial resolution based on MTF at 10% for Agfa CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.9 cycles/mm and 2.8 cycles/mm, respectively. The spatial resolution based on MTF at 10% for Fuji CR system with I.P size of $8{\times}10$ inches and $14{\times}17$ inches was measured as 3.4 cycles/mm and 3.2 cycles/mm, respectively. There was difference in the spatial resolution for $14{\times}17$ inches, although radiation dose does not effect to the MTF. The NPS of the Agfa CR system shows similar results for different pixel size between $100{\mu}m$ for $8{\times}10$ inch I.P and $150{\mu}m$ for $14{\times}17$ inch I.P. For both systems, the results show better NPS for increased radiation dose due to increasing number of photons. DQE of the Agfa CR system for $8{\times}10$ inch I.P and $14{\times}17$ inch I.P resulted in 11% and 8.8% at 1.5 cycles/mm, respectively. Both systems show that the higher level of radiation dose would lead to the worse DQE efficiency. Measuring DQE for multiple factors of imaging characteristics plays very important role in determining efficiency of equipment and reducing radiation dose for the patients. In conclusion, the results of this study could be used as a baseline to optimize imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE for different level of radiation dose.

  • PDF

Electrical Properties and Structures of Spinel Type LiMn$_{2-y}$M$_y$O$_4$(M=Cr$^{3+}$) Doped with Transition Metal (전이금속으로 치환된 Spinel형 LiMn$_{2-y}$M$_y$O$_4$(M=Cr$^{3+}$)의 구조 및 전기적 성질)

  • 형경우;김중헌;권태윤
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.9
    • /
    • pp.930-936
    • /
    • 1999
  • For LiMn2O4 based spinel structures the stoichiometric reaction conditions need be considered carefully because the electrical properties depend on the structural stability. In order to obtain the homogeneous compound the Pechini process was chosen which could obtain a stoichiometry phase even low temperature and dependency of the synthetic condition on structural stability and electrochemical performance was investigated. X-ray diffraction studies showed that the compounds doped with transition metal have smaller lattice constants than those un doped. The dc conductivity was evaluated by a four probe method in the low and high temperature region respectively. The variations of basal spacings for the cathode were detected to be dependent on the extent of current flows (under dc)

  • PDF

A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process (LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구)

  • 강현욱;권현옥;송요승
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

Structure and Magnetic Properties of Cr2O3/CrO2 Nanoparticles Prepared by Reactive Laser Ablation and Oxidation under High Pressure of Oxygen

  • Si, P.Z.;Wang, X.L.;Xiao, X.F.;Chen, H.J.;Liu, X.Y.;Jiang, L.;Liu, J.J.;Jiao, Z.W.;Ge, H.L.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.211-214
    • /
    • 2015
  • $Cr_2O_3$ nanoparticles were prepared via one-step reactive laser ablation of Cr in oxygen. The metastable $CrO_2$ phase was obtained through the subsequent oxidation of $Cr_2O_3$ nanoparticles under $O_2$ with gas pressures of up to 40 MPa. The as-prepared $Cr_2O_3$ nanoparticles are spherical or rectangular in shape with sizes ranging from 20 nm to 50 nm. High oxygen pressure annealing is effective in producing meta-stable $CrO_2$ from as-dried $Cr_2O_3$ nanoparticles, and the $Cr_2O_3$ nanoparticles exhibit a weak ferromagnetic behavior with an exchange bias of up to 11 mT that can be ascribed to the interfacial exchange coupling between uncompensated surface spins and the antiferromagnetic core. The $Cr_2O_3/CrO_2$ nanoparticles exhibit an enhanced saturation magnetization and a reduced exchange bias with an increasing faction of $CrO_2$ due to the elimination of uncompensated surface spins over the $Cr_2O_3$ nanoparticles when exposed to a high pressure of $O_2$ and/or possible phase segregation that results in a smaller grain size for both $Cr_2O_3$ and $CrO_2$.

Fabrication of Stack-Structured Gas Sensor of LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3 and Its NOx Sensing Properties (LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3의 적층구조를 가지는 가스센서 제조와 그의 NOx 검지특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.423-428
    • /
    • 2015
  • Impedancemetric $NO_x$ (NO and $NO_2$) gas sensors were designed with a stacked-layer structure and fabricated using $LaCr_xCo_{1-x}O_3$ (x = 0, 0.2, 0.5, 0.8 and 1) as the receptor material and $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ plates as the solid-electrolyte transducer material. The $LaCr_xCo_{1-x}O_3$ layers were prepared with a polymeric precursor method that used ethylene glycol as the solvent, acetyl acetone as the chelating agent, and polyvinylpyrrolidone as the polymer additive. The effects of the Co concentration on the structural, morphological, and $NO_x$ sensing properties of the $LaCr_xCo_{1-x}O_3$ powders were investigated with powder X-ray diffraction, field emission scanning electron microscopy, and its response to 20~250 ppm of $NO_x$ at $400^{\circ}C$ (for 1 kHz and 0.5 V), respectively. When the as-prepared precursors were calcined at $700^{\circ}C$, only a single phase was detected, which corresponded to a perovskite-type structure. The XRD results showed that as the Co concentration of the $LaCr_xCo_{1-x}O_3$powders increased, the crystal structure was transformed from an orthorhombic phase to a rhombohedral phase. Moreover, the $LaCr_xCo_{1-x}O_3$ powders with $0{\leq}x<0.8$ had a rhombohedral symmetry. The size of the particles in the $LaCr_xCo_{1-x}O_3$powders increased from 0.1 to $0.5{\mu}m$ as the Co concentration increased. The sensing performance of the stack-structured $LaCr_xCo_{1-x}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensors was found to divide the impedance component between the resistance and capacitance. The response of these sensors to NO gas was more sensitive than that to $NO_2$ gas. Compared to other impedancemetric sensors, the $LaCr_{0.8}Co_{0.2}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensor exhibited good reversibility and reliable sensingresponse properties for $NO_x$ gases.

Improvement of Fe, Mn or Si Substitution on Hydrogen Storage Properties of Ti-Cr-V Alloys (Fe, Mn, Si 치환에 의한 Ti-Cr-V 합금의 수소저장 특성 향상)

  • Yoo, Jeong-Hyun;Cho, Sung-Wook;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.250-255
    • /
    • 2007
  • Hydrogen storage properties of $Ti_{0.32}Cr_{0.43-X}V_{0.25}M_X$($0{\leq}X{\leq}0.1$, M=Fe, Mn, Si) have been investigated. With varing of Mn content, the lattice parameter of the alloy was unchanged and similar to that of $Ti_{0.32}Cr_{0.43}V_{0.25}$ alloy. With increase of Fe, Si content, the lattice parameters of the BCC phases decreased. When the Fe content was 8 at%, the desorption plateau pressure increased to several atmospheres without decrease of the effective hydrogen storage capacity of the alloy. When the Mn content was 8 at%, the effective hydrogen storage capacity showed approximately 2.5 wt% without change in the desorption plateau pressure. With increase of Si content, hysteresis increased and hydrogen storage capacity decreased rapidly. A study was also made on how desorption temperature affected the usable hydrogen of the $Ti_{0.32}Cr_{0.35}V_{0.25}Mn_{0.08}$ alloy. The temperature was varied from 293 to 413 K, and the pressure from 5 to 0.002 MPa. The usable hydrogen of the alloy was 2.7 wt% when absorbed and desorbed at 293 K and 373 K., respectively. The heat of hydride formation of the alloy was approximately -35.5 kJ/mol $H_2$.

High temperature oxidation of MCrAlY thermal barrier coating (MCrAlY 열차폐 코팅의 고온산화)

  • 고재황;이동복
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.219-219
    • /
    • 2003
  • HVOF(High Velocity Oxygen Fuel)법을 사용한 MCrAlY(M=Ni, Co, Fe)계 열차폐 코팅(thermal barrier coating)은 열기관 내부의 극심한 환경 부하에 대해 구조물 표면에 열적, 화학적 장벽을 형성함으로써 구조물의 내구성을 향상시킨다 이와 동시에 열차폐 효과는 구조물의 온도상승 없이 내부 가동 온도를 높일 수 있게 함으로써 열효율을 상승시키고 연료 효율을 높여 가동비용 절감을 이룰 수 있는 동시에 고 연소를 통한 오염원의 배출을 감소시킬 수 있다. 본 연구에서는 $H_2O$$_2$=5:1 분위기 하에서 HVOF법을 사용하여 Hastelloy-X 기판위에 125$\mu\textrm{m}$의 두께로 다음 5종류의 (Ni, Co, Cr)계 MCrAlY 코팅을 용사시켰다. 준비된 (Ni, Co)-Cr-Al-(Y, Ta, Re), (Ni, Co)-Cr-Al-(Y, Re), (Ni, Co)-Cr-Al-(Y, Ta), (Ni, Co)-Cr-Al-Y, (Ni,Co)-Cr-Al-Ir 코팅시편에 대한 산화성질을 조사하기 위해 대기 중 1000, 1100, 120$0^{\circ}C$에서 50, 100, 150, 200시간 등온실험(Isothermal oxidation)을 실시하였고, XRD, SEM/EDS, EPMA를 이용하여 생성된 산화막과 코팅 시편의 조직 변화를 조사하였다. 산화온도와 산화시간이 증가할수록 산화막의 박리가 많이 발생하였으며, 분석 결과 미세하게 분포된 a-Al$_2$O$_3$ 입자, NiCr$_2$O$_4$스피넬 상, 미세한 Cr$_2$O$_3$가 관찰되었고, 코팅 조성 변화에 따라 형성되는 이들 산화물의 존재비가 달라졌으며, 산화온도가 높아질수록 산화속도가 가속화되었다.

  • PDF

Graphene/BaCrO4 Nanocomposites Catalyzed Photodegradation and Kinetics Study of Organic Dyes

  • Kim, Keun Hyung;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.7-12
    • /
    • 2015
  • The $BaCrO_4$ nanoparticles were synthesized from a 0.1 M $K_2CrO_4$ and 0.1 M $BaCO_3$ solution with stirring for 10 h. The product was washed several times with acetone and heated to $700^{\circ}C$ for 6 h. At that time, the color of mixture was a greenish yellow. The graphene/$BaCrO_4$ nanocomposites were prepared with graphene and $BaCrO_4$ nanoparticles by stirring in tetrahydrofuran and heated in an electric furnace at $700^{\circ}C$ for 2 h. The $BaCrO_4$ nanoparticles, graphene/$BaCrO_4$ and heated graphene/$BaCrO_4$ nanocomposites were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The graphene/$BaCrO_4$ nanocomposites and heated graphene/$BaCrO_4$ nanocomposites were evaluated as a photocatalyst and discussed about kinetics study for the degradation of organic dyes, such as methylene blue and rhodamine B under ultraviolet light irradiation at 254 nm.