• Title/Summary/Keyword: $M\"{o}ssbauer$ spectrum

Search Result 46, Processing Time 0.033 seconds

Crystallographic and Magnetic Properties of $NdFe_{10.7}Ti_{1.3}$ ($NdFe_{10.7}Ti_{1.3}$의 결정학적 및 자기적 성질 연구)

  • 이승화;이용종;안성용;김철성;김윤배;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.361-366
    • /
    • 1996
  • $NdFe_{10.7}Ti_{1.3}$ has been studied with X-ray diffraction, Mossbauer spectroscopy and vibrating sample magnet-ometer(VSM). The alloys were prepared by arc-melting under an argon atmosphere. The $NdFe_{10.7}Ti_{1.3}$ contains some $\alpha-Fe$, from X-ray and Mossbauer measurements. The $NdFe_{10.7}Ti_{1.3}$ has the $ThMn_{12}$-type tetragonal struc-ture with $a_{0}=8.607{\AA}\;and\;c_{0}=4.790{\AA}$. The Curie temperature ($T_c$) of the $NdFe_{10.7}Ti_{1.3}$ is 590 K from $M\"{o}ssbauer$ spectroscopy performed at various temperatures ranging from 13 to 800 K. Each spectrum below $T_c$ was fitted with six subspectra of Fe sites in the structure$(8i_{1},\;8i_{2},\;8j_{2},\;8j_{1},\;8f\;and\;{\alpha}-Fe)$. The area fractions of the subspectra at room temperature are 13.8%, 15.4%, 17%, 16.4%, 34.1% and 3.3%, respectively. Magenetic hyperfine fields for the Fe sites decrease in the order, $H_{hf}(8i)>H_{hf}(8j)>H_{hf}(8f)$. The abrupt changes in the magnetic hyperfine field, isomer shift and magnetic moment observed at about 180 K in $NdFe_{10.7}Ti_{1.3}$ are attributed to spin reorientation.

  • PDF

Preparation and Magnetic Properties of Amorphous Spinel Ferrite (비정질 Spinel Ferrite의 제조와 그 자기적 특성)

  • 김태옥;김창곤
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1992
  • The fundamental research about the amorphous ferrite, which is expected as the important material for electronic and information imdustry in future, was carried out in this work. Because the ferromagnetic amorphous ferrites reported recently are very inferior in magnetic properties than the crystalline ferrites, the development of the more ferromagnetic amorphous ferrites is required. In order to obtain the fundamental data for the preparation of amorphous ferrites, the hand-made twin-roller quenching apparatus was used for rapid quenching. Investigation on amorphous ferrite in the system $CaO-Bi_{2}O_{3}-Fe_{2}O_{3}$ has been carried out in the composition of 10-50 mole% CaO, 10-50 mole% $Bi_{2}O_{3}$, 40-70 mole% $Fe_{2}O_{3}$. Large magnetization values were obtained near the composition of the mixture of $BiFeO_{3}$ and $CaFe_{4}O_{7}$. Especially, an amorphous ${(CaO)}_{20}{(Bi_{2}O_{3})_{15}{(Fe_{2}O_{3})}_{65}$ specimen has a magmetization value of about 21.84 emu/g at 0K(10 kOe). Fe $M\"{o}ssbauer$ absorption spectrum indicates that this specimen is compsed of two amorphous phases, antiferromagnetic phase($\alpha$-phase) and ferromagnetic phase($\beta$-phase). Crystallization of this amorphous ferrite was happened in steps-$550^{\circ}C$ and $775^{\circ}C$, then observed crystal phases were perovskite phase of $BiFeO_{3}$ and $Fe_{2}O_{3}$ phase.

  • PDF

Magnetic Properties and Crystalline Transition for the NiCr1.7Fe0.3O4

  • Park, Seung-Iel;Choi, Kang-Ryong;Kouh, Tae-Joon;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.137-140
    • /
    • 2007
  • We have studied the temperature dependent magnetic properties and crystalline phase transitionn in small amount Fe doped nickel chromite. The Crystalline structure of $NiCr_{1.7}Fe_{0.3}O_4$ is spinel cubic (Fd-3m) structure with a lattice constant $a_0=8.317\AA$ at room temperature. The magnetic $N\acute{e}el$ temperature $(T_N)$ of the Fe doped nickel chromite sample is determined to be 250 K. The $M\ddot{o}ssbauer$ spectra exhibit that there are two magnetic phases with the two different sites for the $Cr^{3+}$ ions. The spectrum at 4.2 K is fitted to two magnetic components of the magnetic hyperfine fields $H_{hf}=496$ and 485 kOe. From the spectrum at 295 K, the electric quadrupole splittings are observed with large values of 0.49 and 0.50 mm/s, respectively. The values of the isomer shifts at all temperature ranges show that the Fe ions are ferric states. We are suggested that the dynamic Jahn-Teller distortion and anisotropic magnetic relaxation effects due to the crystalline phase transition.

Mössbauer Study of Ti1-x-yCoxFeyO2

  • Kim, Eng-Chan;Lee, S.R.;Kim, T.H.;Ryu, Y.S.;Cho, J.H.;Joh, Y.G.;Kim, D.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.11-13
    • /
    • 2006
  • [ $M\"{o}ssbauer$ ] spectra of $Ti_{1-x-y}Co_xFe_yO_2(0.01{\leq}x,\;y{\leq}0.05)$ prepared with $^{57}Fe$ enriched iron have been taken at various temperatures ranging from 80 to 300K. The Mossbauer spectrum of $Ti0.94Co_{0.03}Fe_{0.03}O_2$ consists of a ferromagnetic (six-Lorentzian), a paramagnetic phase (doublet) and armorphous phase over all temperature ranges. Isomer shifts indicate $Fe^{3+}$ for the ferromagnetic phase and the paramagneic phase of $Ti_{1-x-y}Co_xFe_yO_2$ samples. It is noted that the magnetic hyperfine field of ferromagnetic phase had the value about 1.5 times as large as that of u-fe. The XRB data for $Ti_{1-x-y}Co_xFe_yO_2$ showed mainly rutile phase with tetragonal structures without any segregation of Co and Fe into particulates within the instrumental resolution limit. The magnetic moment per (Co+Fe) atom in $Ti0.94Co_{0.03}Fe_{0.03}O_2$, under the applied field of 1T was estimated to be about $0.332{\mu}_B$ which is ten times as large as that of $Ti0.97Co_{0.03}Fe_{0.03}O_2,\;0.024{\mu}_B$ per Co atom, suggesting a high spin configuration of Co and fe ions.

The Particle Size Distribution of $\alpha-Fe_2O_3$from Mossbauer Spectra (${\Alpha}-Fe_2O_3$ 미세입자의 크기분포에 관한 Mossbauer 분광학적 연구)

  • 이민용;김시정;고영복;서정철;이충섭
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • ${\Alpha}-Fe_2O_3$ was accomplished by chemical method as low temperature as possible and the crystallographic and magnetic properties have been studied by Mossbauer spectroscopy and X-ray diffraction. The sample heated at 15$0^{\circ}C$ is found to have a Corundums symmetry with the hexagonal lattice constant a=8.26$\pm$0.05$\AA$, c=8.75$\pm$0.05$\AA$. The M$\"{o}$ssbauer spectra between the 4.2K and the room temperature show that the ${\Alpha}-Fe_2O_3$ crystallized with a single phase and fine sizes. The particle size distribution has the Gaussian distribution center at 98$\AA$ and the half width of 32$\AA$.TEX>.

  • PDF

Mössbauer and Infrared Absorption Spectroscopy of Tourmaline Minerals (전기석 광물의 뫼스바우어 및 적외선 흡수 분광학)

  • Kim, Hee Jong;Kim, Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.105-115
    • /
    • 1993
  • $M{\ddot{o}}ssbauer$ and Infrared absorption spectra of the iron-bearing tourmaline minerals show that the ferrous and ferric ions occupy the Y and Z octahedral sites. The Fe ions are almost ferrous, predominantly partitioning into Y site and partly take in Z site. The $Fe^{2+}$ content of the Z sites in brownish black tourmaline minerals are higher than that in blue/green tourmaline minerals. Therefore, 720 nm peak of brownish black samples is broader than that of blue/green samples in optical spectra. All of the blue/green tourmaline minerals used in experiment have only $Fe^{2+}$ ion. The IR spectra of tourmaline depend on the cation environments around OH groups, as also evidenced by their chemical analyses. There appear no difference in IR spectrum between O(1)H and O(3)H binding characters in the heat-treated samples. But the characteristic $3565cm^{-1}$ peak appears in the ferrous hydroxyl bearing silicates, where dehydroxylation temperature for OH coordinated to $Fe^{2+}$ is $700{\sim}800^{\circ}C$.

  • PDF