Abstract
[ $M\"{o}ssbauer$ ] spectra of $Ti_{1-x-y}Co_xFe_yO_2(0.01{\leq}x,\;y{\leq}0.05)$ prepared with $^{57}Fe$ enriched iron have been taken at various temperatures ranging from 80 to 300K. The Mossbauer spectrum of $Ti0.94Co_{0.03}Fe_{0.03}O_2$ consists of a ferromagnetic (six-Lorentzian), a paramagnetic phase (doublet) and armorphous phase over all temperature ranges. Isomer shifts indicate $Fe^{3+}$ for the ferromagnetic phase and the paramagneic phase of $Ti_{1-x-y}Co_xFe_yO_2$ samples. It is noted that the magnetic hyperfine field of ferromagnetic phase had the value about 1.5 times as large as that of u-fe. The XRB data for $Ti_{1-x-y}Co_xFe_yO_2$ showed mainly rutile phase with tetragonal structures without any segregation of Co and Fe into particulates within the instrumental resolution limit. The magnetic moment per (Co+Fe) atom in $Ti0.94Co_{0.03}Fe_{0.03}O_2$, under the applied field of 1T was estimated to be about $0.332{\mu}_B$ which is ten times as large as that of $Ti0.97Co_{0.03}Fe_{0.03}O_2,\;0.024{\mu}_B$ per Co atom, suggesting a high spin configuration of Co and fe ions.