DOI QR코드

DOI QR Code

Mössbauer Study of Ti1-x-yCoxFeyO2

  • Kim, Eng-Chan (Department of Physics, Yeungnam University) ;
  • Lee, S.R. (Department of Physics, Yeungnam University) ;
  • Kim, T.H. (Department of Physics, Yeungnam University) ;
  • Ryu, Y.S. (Department of Physics, Yeungnam University) ;
  • Cho, J.H. (Department of Physics, Yeungnam University) ;
  • Joh, Y.G. (Department of Physics, Yeungnam University) ;
  • Kim, D.H. (Department of Physics, Yeungnam University)
  • Published : 2006.02.01

Abstract

[ $M\"{o}ssbauer$ ] spectra of $Ti_{1-x-y}Co_xFe_yO_2(0.01{\leq}x,\;y{\leq}0.05)$ prepared with $^{57}Fe$ enriched iron have been taken at various temperatures ranging from 80 to 300K. The Mossbauer spectrum of $Ti0.94Co_{0.03}Fe_{0.03}O_2$ consists of a ferromagnetic (six-Lorentzian), a paramagnetic phase (doublet) and armorphous phase over all temperature ranges. Isomer shifts indicate $Fe^{3+}$ for the ferromagnetic phase and the paramagneic phase of $Ti_{1-x-y}Co_xFe_yO_2$ samples. It is noted that the magnetic hyperfine field of ferromagnetic phase had the value about 1.5 times as large as that of u-fe. The XRB data for $Ti_{1-x-y}Co_xFe_yO_2$ showed mainly rutile phase with tetragonal structures without any segregation of Co and Fe into particulates within the instrumental resolution limit. The magnetic moment per (Co+Fe) atom in $Ti0.94Co_{0.03}Fe_{0.03}O_2$, under the applied field of 1T was estimated to be about $0.332{\mu}_B$ which is ten times as large as that of $Ti0.97Co_{0.03}Fe_{0.03}O_2,\;0.024{\mu}_B$ per Co atom, suggesting a high spin configuration of Co and fe ions.

Keywords

References

  1. Y. Matsumoto, M. Murakami, T. Shono, T. Hasagawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Science 291, 854(2001) https://doi.org/10.1126/science.1056186
  2. Y. L. Soo et al., Appl. Phys. Lett. 81, 655(2002) https://doi.org/10.1063/1.1495544
  3. J. Konig, H.-H. Lin, and A. H. MacDonald, Phys. Rev. Lett. 84, 5628(2000)
  4. S. A. Chambers, S. Thevuthasan, R. F. C. Farrow. R. F. Marks, J. U.Thiele, L. Folks, M. G. Samant, A. J. Kellock, N. Ruzycki, D. L. Ederer, and U. Diebold, Appl. Phy. Lett. 79, 3467(2001) https://doi.org/10.1063/1.1420434
  5. S. A. Chambers, Materials Today April, 34(2002)
  6. S. R Shinde et al., cond-mat/0203576
  7. G. S. Herman, M. R. Sievers, and Y. Gao, Phys. Rev. Lett. 84, 3354(2000) https://doi.org/10.1103/PhysRevLett.84.3354
  8. T. Uustare, J. Aarik, and M. Elango, Appl. Phys. Lett. 65, 2551(1994) https://doi.org/10.1063/1.112632
  9. W. K. Park, R. J. Ortega-Hertogs, J. S. Moodera, A. Punnoose, and M. S. Seehra, J. Appl. Phys. 91, 8093(2002)
  10. K. S. Baek, E. J. Hahn, and H. N. Ok, Phys. Rev. B 36, 763(1987) https://doi.org/10.1103/PhysRevB.36.763
  11. H. M. Lee, S. J. Kim, I. B. Shim, and C. S. Kim, IEEE Tans. Magn. 39, 2788(2003) https://doi.org/10.1109/TMAG.2003.815712
  12. J. M. Sullivan and S. C. Erwin, Phy. Rev. B 67, 144415 (2003) https://doi.org/10.1103/PhysRevB.67.144415

Cited by

  1. A feasibility Study on the Movement Control of Particulate Enforced by Electrodynamic Force vol.40, pp.3, 2018, https://doi.org/10.4491/KSEE.2018.40.3.131