• Title/Summary/Keyword: $Li_2SiO_3$

Search Result 298, Processing Time 0.027 seconds

Effect of SiO2/B2O3 ratio on Li ion conductivity of a Li2O-B2O3-SiO2 glass electrolyte

  • Kim, Young Han;Yoon, Mi Young;Lee, Eun Jung;Hwang, Hae Jin
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc1
    • /
    • pp.37-41
    • /
    • 2012
  • A lithium ion conducting borosilicate glass was fabricated by a conventional melt quenching technique from a mixture of Li2CO3, B2O3 and SiO2 powders. The Li ion conductivity of the lithium borosilicate glasses was evaluated in terms of the SiO2/B2O3 ratio. In the Li2O-B2O3-SiO2 ternary glass, the glass forming region decreases with an increasing Li2O content. At the same Li2O, the crystallization tendency of the glass samples increases with the SiO2/B2O3 ratio, resulting in a reduced glass forming region in the Li2O-B2O3-SiO2 ternary glass. The electrical conductivity moderately depends on the SiO2/B2O3 ratio in the Li2O-B2O3-SiO2 ternary glass. The conductivity of the glasses slightly increases with the SiO2/B2O3 ratio. The observed phenomenon can be explained by the modification of the glass structure as a function of the SiO2 content.

Analysis on the Formation of Li4SiO4 and Li2SiO3 through First Principle Calculations and Comparing with Experimental Data Related to Lithium Battery

  • Doh, Chil-Hoon;Veluchamy, Angathevar;Oh, Min-Wook;Han, Byung-Chan
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.146-151
    • /
    • 2011
  • The formation of Li-Si-O phases, $Li_4SiO_4$ and $Li_2SiO_3$ from the starting materials SiO and $Li_2O$ are analyzed using Vienna Ab-initio Simulation (VASP) package and the total energies of Li-Si-O compounds are evaluated using Projector Augmented Wave (PAW) method and correlated the structural characteristics of the binary system SiO-$Li_2O$ with experimental data from electrochemical method. Despite $Li_2SiO_3$ becomes stable phase by virtue of lowest formation energy calculated through VASP, the experimental method shows presence of $Li_4SiO_4$ as the only product formed when SiO and $Li_2O$ reacts during slow heating to reach $550^{\circ}C$ and found no evidence for the formation of $Li_2SiO_3$. Also, higher density of $Li_4SiO_4$(2.42 g $ml^{-1}$) compared to the compositional mixture $1SiO_2-2Li_2O$ (2.226 g $ml^{-1}$) and better cycle capacity observed through experiment proves that $Li_4SiO_4$ as the most stable anode supported by better cycleabilityfor lithium ion battery remains as paradox from the point of view of VASP calculations.

Li-doped Y2SiO5:Ce, Blue-emitting Phosphor (Li-이온이 도핑된 Y2SiO5:Ce 청색 형광체)

  • Park, Jung-Cheol;Jeon, Gi-Wan
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.3
    • /
    • pp.232-236
    • /
    • 2006
  • The Y1.99-xMxCe0.01SiO5(M=Li, La, Nd, and Gd) phosphors were synthesized by solid-state reaction at 1350oC for 10h under reducing atmosphere in order to improve properties of blue emitting phosphors. Compared with commercial blue phosphors, the Y2SiO5:Ce blue phosphors substituted with various elements showed significant enhancement of the emission intensity. Particularly, 1 mol% Li doped Y2SiO5:Ce phosphors indicated the maximum emission intensity in the photoluminescence spectra. Thanks to SEM analyses revealed that the morphology of Y2SiO5:(Ce,Li) blue phosphors was a pseudo-spherical with particle size of 3m.

Surface Modification of a Li[Ni0.8Co0.15Al0.05]O2 Cathode using Li2SiO3 Solid Electrolyte

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • $Li_2SiO_3$ was used as a coating material to improve the electrochemical performance of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$. $Li_2SiO_3$ is not only a stable oxide but also an ionic conductor and can, therefore, facilitate the movement of lithium ions at the cathode/electrolyte interface. The surface of the $Li_2SiO_3$-coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was covered with island-type $Li_2SiO_3$ particles, and the coating process did not affect the structural integrity of the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ powder. The $Li_2SiO_3$ coating improved the discharge capacity and rate capability; moreover, the $Li_2SiO_3$-coated electrodes showed reduced impedance values. The surface of the lithium-ion battery cathode is typically attacked by the HF-containing electrolyte, which forms an undesired surface layer that hinders the movement of lithium ions and electrons. However, the $Li_2SiO_3$ coating layer can prevent the undesired side reactions between the cathode surface and the electrolyte, thus enhancing the rate capability and discharge capacity. The thermal stability of $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ was also improved by the $Li_2SiO_3$ coating.

Amorphous Lithium Lanthanum Titanate Solid Electrolyte Grown on LiCoO2 Cathode by Pulsed Laser Deposition for All-Solid-State Lithium Thin Film Microbattery (전고상 리튬 박막 전지 구현을 위해 펄스 레이저 증착법으로 LiCoO2 정극위에 성장시킨 비정질 (Li, La)TiO3고체 전해질의 특성)

  • 안준구;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.8
    • /
    • pp.593-598
    • /
    • 2004
  • To make the all-solid-state lithium thin film battery having less than 1 fm in thickness, LiCoO$_2$ thin films were deposited on Pt/TiO$_2$/SiO$_2$/Si substrate as a function of Li/Co mole ratio and the deposition temperature by Pulsed Laser Deposition (PLD). Especially, LiCoO$_2$ thin films deposited at 50$0^{\circ}C$ with target of Li/Co=1.2 mole ratio show an initial discharge capacity of 53 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 67.6%. The microstructural and electrochemical properies of (Li, La)TiO3 thin films grown on LiCoO$_2$Pt/TiO$_2$/SiO$_2$/Si structures by Pulsed Laser Deposition (PLD) were investigated at various deposition temperatures. The thin films grown at 10$0^{\circ}C$ show an initial discharge capacity of approximately 51 $\mu$Ah/cm$^2$-$\mu$m and moreover show excellent discharge capacity retention of 90% after 100 cycles. An amorphous (Li, La)TiO$_3$ solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium thin film battery below 1 $\mu$m.

Effects of UV irradiation on the crystalline phase with$Li_2O-Al_2O_3-SiO_2-K_2O$system ($Li_2O-Al_2O_3-SiO_2-K_2O$ 계어서의 UV조사 시간에 따른 결정상 생성에 관한 연구)

  • 이명원;강원호
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.166-171
    • /
    • 1997
  • The photomachinable glass-ceramics of Ag and CeO$_{2}$ added to Li$_{2}$O-Al$_{2}$O$_{3}$-SiO$_{2}$-K$_{2}$O glass system was investigated as a function of UV irradiation time. The temperature of optimum nucleation and crystal growth temperature were confirmed at 525.deg. C, 630.deg. C respectively using DTA and TMA. The phases of Li$_{2}$O.SiO$_{2}$ habit were lath-like and/or dendrite type and [002] direction of Li$_{2}$O.SiO$_{2}$ / Li$_{2}$O.2SiO$_{2}$ phases were changed according to the UV irradiation time by 400 W, 362 nm UV light source. Under that condition, the optimum UV irradiation time was 5 min.

  • PDF

Synthesis of Li2MnSiO4 by Solid-state Reaction (고상반응법을 이용한 Li2MnSiO4 합성)

  • Kim, Ji-Su;Shim, Joong-Pyo;Park, Gyung-Se;Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.398-402
    • /
    • 2012
  • Synthesis of $Li_2MnSiO_4$ was attempted by the conventional solid-state reaction method, and the phase formation behavior according to the change of the calcination condition was investigated. When the mixture of the three source materials, $Li_2O$, MnO and $SiO_2$ powders, were used for calcination in air, it was difficult to develop the $Li_2MnSiO_4$ phase because the oxidation number of $Mn^{2+}$ could not be maintained. Therefore, two-step calcination was applied: $Li_2SiO_3$ was made from $Li_2O$ and $SiO_2$ at the first step, and $Li_2MnSiO_4$ was synthesized from $Li_2SiO_3$ and MnO at the second step. It was easy to make $Li_2MnSiO_3$ from $Li_2O$ and $SiO_2$. $Li_2MnSiO_4$ single phase was developed by the calcination at $900^{\circ}C$ for 24 hr in Ar atmosphere as the oxidation of $Mn^{2+}$ was prevented. However, the $Li_2MnSiO_4$ was ${\gamma}-Li_2MnSiO_4$, one of the polymorph of $Li_2MnSiO_4$, which could not be used as the cathode materials in Li-ion batteries. By applying the additional low temperature annealing at $400^{\circ}C$, the single phase ${\beta}-Li_2MnSiO_4$ powder was synthesized successfully through the phase transition from ${\gamma}$ to ${\beta}$ phase.

Studies of Refractive Index and Hardness from the structures in Quarternary Li2O-B2O3-Al2O3-SiO2 Glasses (4성분 Li2O-B2O3-Al2O3-SiO2 유리들의 구조로부터 굴절률과 경도 연구)

  • Moon, Seong-Jun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.27-31
    • /
    • 2002
  • Quarternary $Li_2O-B_2O_3-Al_2O_3-SiO_2$ glasses were fabricated by the function of $R({\equiv}Li_2Omole%/B_2O_3mole%)$ and $K({\equiv}(Al_2O_3mole%+SiO_2mole%/B_2O_3mole%)$. The structures of these glasses were investigated through refractive index and Vicker's hardness. The refractive index increased as the increase of the polarizability in the glass network. In the region of low $Li_2O$ content, the refractive index increased due to the increase of the polarizability in the glass network but, in the region of high $Li_2O$ content, the rate of increase of the refractive index decreased due to the increase of the molar volume caused by the formation of $BO_3{^-}$ units with relatively high molar volume. And, the refractive index decreased as the increase of $Al_2O_3+SiO_2$ content with the molar volume in the glass network. The increase and decrease of vicker's hardness values for those glasses depended on the fraction of tetrahedral $BO_4$ units and it of triangle $BO_3{^-}$ units with non-bridging oxygen, respectively.

  • PDF

Synthesis of Gd2O3 : (Li, Eu) Films using Phosphor Powders Coated with SiO2 Nano Particles (SiO2 나노 입자로 코팅된 형광체 분말을 이용한 Gd2O3 : (Li, Eu) 필름 제조)

  • Park, Jung-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.619-624
    • /
    • 2003
  • The $Gd_{1.9-x}Li_{0.1}Eu_xO_3$ (x=0.02, 0.05, 0.08, and 0.12) powders (${\thickapprox}1{\mu}m$) synthesized by sol-gel method, whose surfaces are modified in a colloidal silica suspension (size of $SiO_2$ particles: ${\sim}30$ nm), have been fabricated to highly stable and effective luminescent films on the glass substrates. Thanks to the fused $SiO_2$ nano particles in the vicinity of the glass softening temperature (at around $700^{\circ}C$), $Gd_{1.9-x}Li_{0.1}Eu_xO_3$ powders are strongly attached onto the surface of glass substrate (>9H, pencil hardness tester). This simple and low-cost method to get $Gd_{1.9-x}Li_{0.1}Eu_xO_3$ phosphor films without any loss of luminescence brightness would promise for applications to display devices.

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.