• Title/Summary/Keyword: $L_k$ operator

Search Result 329, Processing Time 0.022 seconds

REMARK ON GENERALIZED k-QUASIHYPONORMAL OPERATORS

  • Ko, Eun-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.701-707
    • /
    • 1998
  • An operator $T{\in} {{\mathcal L}(H)}$ is generalized k-quasihyponormal if there exist a constant M>0 such that $T^{\ast k}[M^2(T-z)^{\ast}(T-z)-(T-z)(T-z)^{\ast}]T^k{\geq}0$ for some integer $k{\geq}0$ and all $Z{\in} {\mathbf C}$. In this paper, we show that it T is a generalized k-quasihyponormal operator with the property $0{\not\in}{\sigma}(T)$, then T is subscalar of order 2. As a corollary, we get that such a T has a nontrivial invariant subspace if its spectrum has interior in C.

  • PDF

SHARP Lp→Lr ESTIMATES OF RESTRICTED AVERAGING OPERATORS OVER CURVES ON PLANES IN FINITE FIELDS

  • Koh, Doowon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.251-259
    • /
    • 2015
  • Let $\mathbb{F}^d_q$ be a d-dimensional vector space over a finite field $\mathbb{F}^d_q$ with q elements. We endow the space $\mathbb{F}^d_q$ with a normalized counting measure dx. Let ${\sigma}$ be a normalized surface measure on an algebraic variety V contained in the space ($\mathbb{F}^d_q$, dx). We define the restricted averaging operator AV by $A_Vf(X)=f*{\sigma}(x)$ for $x{\in}V$, where $f:(\mathbb{F}^d_q,dx){\rightarrow}\mathbb{C}$: In this paper, we initially investigate $L^p{\rightarrow}L^r$ estimates of the restricted averaging operator AV. As a main result, we obtain the optimal results on this problem in the case when the varieties V are any nondegenerate algebraic curves in two dimensional vector spaces over finite fields. The Fourier restriction estimates for curves on $\mathbb{F}^2_q$ play a crucial role in proving our results.

PROXIMINALITY OF CERTAIN SPACES OF COMPACT OPERATORS

  • Cho, Chong-Man;Roh, Woo-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.65-69
    • /
    • 2001
  • For any closed subspace X of $\ell_p, \; 1<\kappa<\infty$, K(X) is proximinal in L(X), and if X is a Banach space with an unconditional shrinking basis, then K(X, c$_0$) is proximinal in L(X,$ \ell_\infty$).

  • PDF

CONDITIONAL EXPECTATIONS GENERATING THE COMMUTANTS OF SUBALGEBRAS OF $L^{\infty}$

  • Lambert, Alan
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.699-705
    • /
    • 1999
  • Given a probability space and a subsigma algebra A, each measure equivalent to the probability measure generates a different conditional expectation operator. We characterize those which act boundedly on the original $L^2$ space, and show there are sufficiently many such conditional expectations to generate the commutant of $L^{\infty}$ (A).

  • PDF

AN APPLICATION OF CRITICAL POINT THEORY TO THE NONLINEAR HYPERBOLIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.15 no.2
    • /
    • pp.149-165
    • /
    • 2007
  • We investigate the existence of multiple nontrivial solutions $u(x,t)$ for a perturbation $b[({\xi}-{\eta}+2)^+-2]$ of the hyperbolic system with Dirichlet boundary condition $$(0.1)\;L{\xi}={\mu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},\\L{\eta}={\nu}[({\xi}-{\eta}+2)^+-2]\;in\;({-{\frac{{\pi}}{2}}},{\frac{{\pi}}{2}}){\times}\mathbb{R},$$, where $u^+$=max{u,o}, ${\mu}$, ${\nu}$ are nonzero constants. Here L is the wave operator in $\mathbb{R}^2$ and the nonlinearity $({\mu}-{\nu})[({\xi}-{\eta}+2)^+-2]$ crosses the eigenvalues of the wave operator.

  • PDF

OSCILLATION OF NEUTRAL DIFFERENCE EQUATIONS

  • Koo, Nam Jip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.125-131
    • /
    • 1999
  • We obtain some sufficient conditions for oscillation of the neutral difference equation with positive and negative coefficients $${\Delta}(x_n-cx_{n-m})+px_{n-k}-qx_{n-l}=0$$, where ${\Delta}$ denotes the forward difference operator, m, k, l, are nonnegative integers, and $c{\in}[0,1),p,q{\in}\mathbb{R}^+$.

  • PDF

On Generalized Integral Operator Based on Salagean Operator

  • Al-Kharsani, Huda Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.359-366
    • /
    • 2008
  • Let A(p) be the class of functions $f\;:\;z^p\;+\;\sum\limits_{j=1}^{\infty}a_jz^{p+j}$ analytic in the open unit disc E. Let, for any integer n > -p, $f_{n+p-1}(z)\;=\;z^p+\sum\limits_{j=1}^{\infty}(p+j)^{n+p-1}z^{p+j}$. We define $f_{n+p-1}^{(-1)}(z)$ by using convolution * as $f_{n+p-1}\;*\;f_{n+p-1}^{-1}=\frac{z^p}{(1-z)^{n+p}$. A function p, analytic in E with p(0) = 1, is in the class $P_k(\rho)$ if ${\int}_0^{2\pi}\|\frac{Re\;p(z)-\rho}{p-\rho}\|\;d\theta\;\leq\;k{\pi}$, where $z=re^{i\theta}$, $k\;\geq\;2$ and $0\;{\leq}\;\rho\;{\leq}\;p$. We use the class $P_k(\rho)$ to introduce a new class of multivalent analytic functions and define an integral operator $L_{n+p-1}(f)\;\;=\;f_{n+p-1}^{-1}\;*\;f$ for f(z) belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.

POSITIVE INTERPOLATION ON Ax = y AND AX = Y IN ALG$\mathcal{L}$

  • Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.259-265
    • /
    • 2009
  • Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$. Let x and y be vectors in $\mathcal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE$ = $EP_x$ for each E ${\in}\;\mathcal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\mathcal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and A ${\geq}$ 0. (2) sup ${\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}:E{\in}\mathcal{L}}$ < ${\infty}$ < x, y > ${\geq}$ 0. Let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Let P be the projection onto $\overline{rangeX}$. If PE = EP for each E ${\in}\;\mathcal{L}$, then the following are equivalent: (1) sup ${\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}:f{\in}\mathcal{H},E{\in}\mathcal{L}}$ < ${\infty}$ and < Xf, Yf > ${\geq}$ 0 for all f in H. (2) There exists a positive operator A in Alg$\mathcal{L}$ such that AX = Y.

THE SYMMETRY OF spin DIRAC SPECTRUMS ON RIEMANNIAN PRODUCT MANIFOLDS

  • HONG, KYUSIK;SUNG, CHANYOUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1037-1049
    • /
    • 2015
  • It is well-known that the spectrum of a $spin^{\mathbb{C}}$ Dirac operator on a closed Riemannian $spin^{\mathbb{C}}$ manifold $M^{2k}$ of dimension 2k for $k{\in}{\mathbb{N}}$ is symmetric. In this article, we prove that over an odd-dimensional Riemannian product $M^{2p}_1{\times}M^{2q+1}_2$ with a product $spin^{\mathbb{C}}$ structure for $p{\geq}1$, $q{\geq}0$, the spectrum of a $spin^{\mathbb{C}}$ Dirac operator given by a product connection is symmetric if and only if either the $spin^{\mathbb{C}}$ Dirac spectrum of $M^{2q+1}_2$ is symmetric or $(e^{{\frac{1}{2}}c_1(L_1)}{\hat{A}}(M_1))[M_1]=0$, where $L_1$ is the associated line bundle for the given $spin^{\mathbb{C}}$ structure of $M_1$.