• 제목/요약/키워드: $L_S$-

검색결과 26,137건 처리시간 0.05초

온도와 관수 주기가 오이 포트 묘의 광합성, 생육 및 생장 해석에 미치는 영향 (Effects of Temperature and Irrigation Intervals on Photosynthesis, Growth and Growth Analysis of Pot-grown Cucumber Seedlings)

  • 안진희;최은영;이용범;최기영
    • 생물환경조절학회지
    • /
    • 제32권2호
    • /
    • pp.148-156
    • /
    • 2023
  • 본 연구는 오이(Cucumis sativus L.)의 광합성, 생육 및 수분이용효율을 분석하고 생장해석을 통해 생육 온도와 관수 주기가 식물에 미치는 영향에 대해 알아보고자 환경 제어가 가능한 실내 재배상에서 광도(70W·m-2)와 상대습도(65%)를 동일하게 설정하여 수행하였다. 처리는 주/야간 온도(℃)를 15/10℃, 25/20℃및 35/25℃로 3처리하였고, 각 온도별 관수 주기를 1일 1회 100mL(S), 2일 1회 200mL(L)로 달리 공급하는 처리를 조합하여 총 6개(15S, 15L, 25S, 25L, 35S, 35L) 처리를 하였다. 초장이 0.5cm인 오이묘 '아시아 은천'을 양질사토로 충진한 1L 원형 포트에 정식하여 21일간 처리하였다. 처리 14일째 광합성, 증산율과 기공전도도는 25S에서 가장 높았고, 관수 주기가 짧은 S처리에서 L처리보다 높았다. 처리 기간 중 총 관수량이 2L로 동일하게 공급되었지만 토양함수율은 15S에서 가장 높았고 25S > 15L > 25L, 35S, 35L 순으로 낮았다. 상대습도는 15/10℃(61.1%)와 25/20℃(67.2%)는 비슷한 경향을 보였지만 35/25℃에서는 80.5%로 높았다. 21일째 오이 생육은 25S에서 가장 높았고, 초장, 생체중과 건물중은 관수 주기에 영향을 받았다. 잎끝황화 현상은 온도가 높았던35S, 35L에서 89.9% 발생하였다. 상대생장률(RGR)과 비엽중(SLA)은 25/20℃(25S, 25L)에서 높았고, RGR은 관수 주기가 짧은 S처리, SLA은 L처리에서 높은 경향을 보였다. 수분이용효율(WUE)은 25S, 25L > 15S > 15L, 35S, 35L 순으로 높았다. 이상의 결과 적온인 25/20℃에서 생육과 수분이용효율도 높았다. 그러나 35/25℃(35S, 35L) 처리에서는 토양 함수량이 낮았고, 잎끝 황화현상이 발생하였으며, 15/10℃(15S, 15L)에서 토양 함수율이 높고 광합성과 생장이 낮았다.

Identification and Comparison of the Nucleotide Sequence of 16S-23S rRNA Gene Intergenic Small SR(Spacer Region) of Lactobacillus rhamnosus ATCC 53103 with Those of L. casei, L. acidophilus and L. helveticus

  • Byun, J.R.;Yoon, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권12호
    • /
    • pp.1816-1821
    • /
    • 2003
  • Reliable PCR based identification of lactobacilli has been described utilizing the sequence of 16S-23S rRNA intergenic spacer region. Those sequence comparisons showed a high degree of difference in homology among the strains of L. rhamnosus, L. casei, L. acidophilus and L. helveticus whose 16S-23S rRNA intergenic small SR's sizes were 222 bp, 222 bp, 206 bp and 216 bp respectively. The sequence of 16S-23S rRNA intergenic spacer region of L. rhamnosus ATCC 53103 revealed the close relatedness to those of L. casei strains by the homology ranges from 95.4% to 97.2%. 16S-23S rRNA intergenic spacer region nucleotide sequence of L. acidophilus showed some distant relatedness with L. rhamnosus ATCC 53103 with the homology ranges from 40.3% to 41.8% and that with L. helveticus was shown to be 30% of homology, which exists at the most distant phylogenetic relatedness. The identification of species and strain of lactobacilli was possible on the basis of these results. The common sequences among the 17 strains were CTAAGGAA located in the initiating position of the DNA and some discrepancies were found between the same strains based on these results.

펩신촉매에 의한 Transpeptide의 생성 (The Evidence for Pepsin-Catalyzed Transpeptidation)

  • 조용권
    • 생명과학회지
    • /
    • 제8권4호
    • /
    • pp.410-415
    • /
    • 1998
  • HPLC 및 electrospary mass spectrum으로부터 L-L dipeptide의 존제하에서 pepsin은 hexapeptide인 L-S-pNF-Nle-A-OMe를 가수분해하여 가수분해물외의 새로운 생성물을 합성하는 것이 확인되었다. 이 생성물은 254nm에서 p-nitro-Phe 잔기를 포함하는 peptide였다. 실험결과로부터 E(L-S-pNF)와 L-L 사이의 acyl transpeptidation에 의해 L-S-pNF-L-L가 생성됨을 뒷받침한다. 이러한 transpeptidation 결과는 product 저해실험에 의한 결과에 기초한 것과는 반대로 L-S-pNF가 해리되기전에 Nle-A-L-OMe가 먼저 한다는 것을 보여준다. 그리고, electrospray mass spectrum 으로부터 위에서 검출된 새로운 펩티드에 해당하는 peak (MW 636.1)을 얻었는데, 이는 새 펩티드의 생성을 확실히 증명하는 증거이다. 한편, Nle-A-L-OMe 생성에 대한 solvent isotope effect는 1.736$\pm$0.121이며 L-S-pNF는 2.28$\pm$0.184 그리고 L-S-pNF-L-L의 생성에는 inverse isotope effect로서 0.576$\pm$0.045였는데, 이는 상기 생성물 해리 순서를 확인시켜 준다. D$_{2}$에서 transpeptidation은 더 빠르기 때문에 isotopically-sensitive단계는 Nle-A-L-OMe해리후에 존재하는 것을 알 수 있다. 본 실험결과는, Rebholz and Northrop$^{1)}$ 및 Cho등의 $^{2)} iso-mechanism이론의 타당성을 제시한다.

  • PDF

수직 배열된 평판에서 혼합대류 열전달 (Mixed Convection Heat Transfer from Vertical In-Line Plates)

  • 김상영;이재신;권순석
    • 설비공학논문집
    • /
    • 제3권2호
    • /
    • pp.123-130
    • /
    • 1991
  • The mixed convection heat transfer from vertical inline plates has been studied numerically by the finite difference method and experimentally with Mach-Zehnder interferometer. The dimensionless spacing, $s/L_1$, the relative length, $L_2/L_1$ and the dimensionless temperature ratio, ${\Phi}_2/{\Phi}_1$ are varied parametically. The lower plate mean Nusselt numbers show same values as $s/L_1$, ${\Phi}_2/{\Phi}_1$ and $L_2/L_1$ increase. The upper plate mean Nusselt numbers increase as $s/L_1$ and ${\Phi}_2/{\Phi}_1$ increase, but $L_2/L_1$ decreases. The upper plate mean Nusselt number is higher than the lower plate mean Nusselt for $s/L_1$ 1.8 at Re=100, $Gr=10^4$, Pr=0.71, $L_2/L_1=0.5$ and ${\Phi}_2/{\Phi}_1=1.0$. A comparison between the experimental and numerical results show good agreement.

  • PDF

Analysis of the Reaction Steps in the Bioconversion of D,L-ATC to L-Cysteine

  • Ryu, Ok-Hee;Shin, Chul-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권1호
    • /
    • pp.50-53
    • /
    • 1991
  • The reaction steps involved in the bioconversion of a chemically synthesized precursor, $D,L-2-amino-{\Delta}^2-thiazoline-4-carboxylic$ acid (D,L-ATC), to L-cysteine and the properties of the involved enzymes were investigated. It was found that the conversion consisted of two steps, i. e., D,L-ATC to S-carbamyl-L-cysteine (S-C-L-cysteine) and S-C-L-cysteine to L-cysteine, and the S-C-L-cysteine was an intermediate between them. While the enzymes involved in the reactions were induced by the addition of D,L-ATC as an inducer, S-C-L-cysteine induced only the enzyme involved in the latter step. The conversion of S-C-L-cysteine to L-cysteine could be also carried out in the presence of hydroxylamine and its rate was much faster than that by the corresponding enzyme. On the other hand, L-cysteine (or L-cystine) was decomposed to evolve $H_2S$ by the enzyme considered to be a kind of desulfhydrase. However, hydroxylamine was a perfect inhibitor for this enzyme.

  • PDF

ON f-DERIVATIONS FROM SEMILATTICES TO LATTICES

  • Yon, Yong Ho;Kim, Kyung Ho
    • 대한수학회논문집
    • /
    • 제29권1호
    • /
    • pp.27-36
    • /
    • 2014
  • In this paper, we introduce the notion of f-derivations from a semilattice S to a lattice L, as a generalization of derivation and f-derivation of lattices. Also, we define the simple f-derivation from S to L, and research the properties of them and the conditions for a lattice L to be distributive. Finally, we prove that a distributive lattice L is isomorphic to the class $SD_f(S,L)$ of all simple f-derivations on S to L for every ${\wedge}$-homomorphism $f:S{\rightarrow}L$ such that $f(x_0){\vee}f(y_0)=1$ for some $x_0,y_0{\in}S$, in particular, $$L{\simeq_-}=SD_f(S,L)$$ for every ${\wedge}$-homomorphism $f:S{\rightarrow}L$ such that $f(x_0)=1$ for some $x_0{\in}S$.

A UNIFORM LAW OF LARGE MUNBERS FOR PRODUCT RANDOM MEASURES

  • Kil, Byung-Mun;Kwon, Joong-Sung
    • 대한수학회보
    • /
    • 제32권2호
    • /
    • pp.221-231
    • /
    • 1995
  • Let $Z_1, Z_2, \ldots, Z_l$ be random set functions or intergrals. Then it is possible to discuss their products. In the case of random integrals, $Z_i$ is a random set function indexed y a family, $G_i$ say, of real valued functions g on $S_i$ for which the integrals $Z_i(g) = \smallint gdZ_i$ are well defined. If $g_i = \in g_i (i = 1, 2, \ldots, l) and g_1 \otimes \cdots \otimes g_l$ denotes the tensor product $g(s) = g_1(s_1)g_2(s_2) \cdots g_l(s_l) for s = (s_1, s_2, \ldots, s_l) and s_i \in S_i$, then we can defined $Z(g) = (Z_1 \times Z_2 \times \cdots \times Z_l)(g) = Z_1(g_1)Z_2(g_2) \cdots Z_l(g_l)$.

  • PDF

ON THE CHARACTERISTIC S-AUTOMATA

  • PARK CHIN HONG
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.779-786
    • /
    • 2005
  • In this paper we shall discuss some properties derived from the characteristic S-automaton $_x(S)_M$, using the fact that ${\mu}_S$ is an equivalence relation on M. When $L_{m}:S{\rightarrow}M$ is a left translation and $L_{M}$ is a collection of $L_{m}'s$, we shall show $_x(S)_{M}{\cong}L_{M}$. If S is commutative, we have $_x(S)_{M{\times}N{\cong}L_{M{\times}N}$. Moreover when M and N are perfect, we have $L_{M{\times}N}{\cong}L_{M}{\times}L_{N}$ and $_x(S)_{M{\times}N}{\cong}_x(S)_{M}{\times}_x(S)_N$.

요통과 경추, 요추전만의 관계에 대한 임상적 연구 (A Clinical Study on Correlation between Cervical, Lumbar Lordosis and Low Back Pain)

  • 정다운;여경찬;윤인애;강현선;문성일
    • Journal of Acupuncture Research
    • /
    • 제26권2호
    • /
    • pp.15-29
    • /
    • 2009
  • Objectives: This study was designed to investigate the correlation between cervical, lumbar lordosis and low back pain(LBP), sex, age and duration of LBP. Methods : Cervical, lumbar lordosis(by Cobb's Method) and Ferguson's angle were measured and evaluated in LBP group and control. Radiograph was taken in lateral direction, erect position. Cobb's angle between C1-C7, C2-C7, L1-L5, L1-S1 and Ferguson's angle were measured and investigated with statistical program. Results: 1. Cervical lordosis have no relation to LBP, sex and age. 2. Lumbar lordosis and Ferguson's angle have no relation to LBP and sex. 3. Cobb's angle L1-L5 have no relation to age. Lumbar lordosis from L1 to S1(Cobb's angle L1-S1) increased in old group(Age>40) compared to young group(Age${\leq}$40). 4. In LBP group, Cobb's angle L1-S1 have no relation to duration of LBP. Lumbar lordosis from L1 to L5(Cobb's angle L1-L5) decreased in acute LBP group compared to Chronic group. Conclusions : Cervical, lumbar lordosis and Ferguson's angle have no relation to LBP and sex. As far as age is concerned, old group have larger lumbosacral lordosis than young group. Acute LBP group have smaller lumbar lordosis(Cobb's angle L1-L5) than chronic group.

  • PDF

AN ANALOGUE OF THE HILTON-MILNER THEOREM FOR WEAK COMPOSITIONS

  • Ku, Cheng Yeaw;Wong, Kok Bin
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.1007-1025
    • /
    • 2015
  • Let $\mathbb{N}_0$ be the set of non-negative integers, and let P(n, l) denote the set of all weak compositions of n with l parts, i.e., $P(n,l)=\{(x_1,x_2,{\cdots},x_l){\in}\mathbb{N}^l_0\;:\;x_1+x_2+{\cdots}+x_l=n\}$. For any element $u=(u_1,u_2,{\cdots},u_l){\in}P(n,l)$, denote its ith-coordinate by u(i), i.e., $u(i)=u_i$. A family $A{\subseteq}P(n,l)$ is said to be t-intersecting if ${\mid}\{i:u(i)=v(i)\}{\mid}{\geq}t$ for all $u,v{\epsilon}A$. A family $A{\subseteq}P(n,l)$ is said to be trivially t-intersecting if there is a t-set T of $[l]=\{1,2,{\cdots},l\}$ and elements $y_s{\in}\mathbb{N}_0(s{\in}T)$ such that $A=\{u{\in}P(n,l):u(j)=yj\;for\;all\;j{\in}T\}$. We prove that given any positive integers l, t with $l{\geq}2t+3$, there exists a constant $n_0(l,t)$ depending only on l and t, such that for all $n{\geq}n_0(l,t)$, if $A{\subseteq}P(n,l)$ is non-trivially t-intersecting, then $${\mid}A{\mid}{\leq}(^{n+l-t-l}_{l-t-1})-(^{n-1}_{l-t-1})+t$$. Moreover, equality holds if and only if there is a t-set T of [l] such that $$A=\bigcup_{s{\in}[l]{\backslash}T}\;A_s{\cup}\{q_i:i{\in}T\}$$, where $$A_s=\{u{\in}P(n,l):u(j)=0\;for\;all\;j{\in}T\;and\;u(s)=0\}$$ and $$q_i{\in}P(n,l)\;with\;q_i(j)=0\;fo\;all\;j{\in}[l]{\backslash}\{i\}\;and\;q_i(i)=n$$.