• Title/Summary/Keyword: $LCO_2$

Search Result 67, Processing Time 0.019 seconds

Separation and Purification of 2,6-dimethylnaphthalene in the Light Cycle Oil(I) -Concentration of a mixture of dimethylnaphthalene isomers in the light cycle oil- (접촉분해경유에 함유된 2,6-dimethylnaphthalene의 분리, 정제(I) -접촉분해경유에 함유된 dimethylnaphthalene이성체 혼합물의 농축-)

  • Kim, Su-Jin;Kim, Sang-Chai;Kawasaki, Junjiro
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.162-170
    • /
    • 1996
  • Light cycle Oil(LCO) contains 2,6-dimethylnaphthalene (2,6-DMNA) which is used as the basic material for high performance engineering plastics and liquid crystal polymer. This study was experimentally investigated to concentrate a mixture of dimethylnaphthalene(DMNA) isomers in the LCO by extraction-distillation combination as a pretreatment for separation and purification of 2,6-DMNA in the LCO. Furthermore, concentration of a mixture of DMNA isomers in the LCO compared between distillation and extraction-distillation combination. The recovery of aromatics in the LCO was performed by batch cocurrent multistage extraction with dimethylsulfoxide and water mixture as solvent. The concentration of naphthalene group(carbon number 10-12) in the extracted mixture is higher than that in the LCO. The yield for naphthalene group increased with decreasing carbon number. The yield for a mixture of DMNA isomers obtained in 5 equilibrium extration runs was about 65%. the separation of individual components with extractedmixture was tested by batch distillation. Futhermore, for recovery of a mixture of DMNA isomers of high concentration, distillate containing DMNA was distilled. As a result, a mixture of DMNA isomers with high concentration such as 60wt% was recovered. The extraction-distillation combination was more effective than the distillation to concentration a mixture of DMNA isomer in the LCO.

  • PDF

Separation and Purification of 2,6-Dimethylnaphthalene Present in the Fraction of Light Cycle Oil by Crystallization Operation (결정화조작에 의한 접촉분해경유 유분에 함유된 2,6-디메틸나프탈렌의 분리·정제)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.799-804
    • /
    • 2018
  • The separation and purification of 2,6-dimethylnaphthalene (2,6-DMN) present in the light cycle oil (LCO) fraction was investigated by a crystallization operation. Solute crystallization (SC) was performed using LCO fraction and iso-propyl alcohol as a raw material and a SC solvent, respectively. Increasing the operation temperature and volume ratio of the solvent to the raw material (S/F) resulted in improving the purity of 2,6-DMN, whereas the yield decreased. As a result of the crystallization operation in three steps containing the SC using LCO fraction (13.9% 2,6-DMN) and isopropyl alcohol, the re-crystallization 1 (RC 1) using the crystals recovered by SC and methyl acetate, and RC 2 using the crystals recovered by RC 1 and methyl acetate, the crystal with 99.9% 2,6-DMN was recovered with 19.5% yield. Furthermore, the separation and purification process of 2,6-DMN present in the LCO fraction was reevaluated by using the experimental results obtained through each operations of SC, RC 1, and RC 2.

Numerical Investigation on the Effect of Surface Tension Change of Liquefied $CO_2$ Droplets on their Ascending Speed (액화이산화탄소 유적의 수직 상승속도에 미치는 표면장력 변화의 영향에 대한 수치연구)

  • Cho, Yoon-Tae;Song, Mu-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.160-163
    • /
    • 2008
  • $CO_2$ ocean sequestration is being considered as a way to earn a frame of time to change other industrial life pattern to overcome the global warming crisis. The method is to dilute the captured $CO_2$ into ocean by ejecting the liquefied $CO_2$ through nozzles. The main issue of such method is the effectiveness and safety, and in both problems the rising speed of those LCO2 droplet is the key parameter. In this paper, the rising speed of LCO2 droplets is numerically studied including the effect of the surfactant which can be residing along the density interface of the droplets. A front tracking method with a simple surface tension model is developed and the rising speed of the droplets is carefully investigated with varying the various parameters. It is demonstrated that the variable surface tension can change the deformation of the droplet, the flow near the interface, and the rising speed.

  • PDF

Retrieval methodology for similar NPP LCO cases based on domain specific NLP

  • No Kyu Seong ;Jae Hee Lee ;Jong Beom Lee;Poong Hyun Seong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.421-431
    • /
    • 2023
  • Nuclear power plants (NPPs) have technical specifications (Tech Specs) to ensure that the equipment and key operating parameters necessary for the safe operation of the power plant are maintained within limiting conditions for operation (LCO) determined by a safety analysis. The LCO of Tech Specs that identify the lowest functional capability of equipment required for safe operation for a facility must be complied for the safe operation of NPP. There have been previous studies to aid in compliance with LCO relevant to rule-based expert systems; however, there is an obvious limit to expert systems for implementing the rules for many situations related to LCO. Therefore, in this study, we present a retrieval methodology for similar LCO cases in determining whether LCO is met or not met. To reflect the natural language processing of NPP features, a domain dictionary was built, and the optimal term frequency-inverse document frequency variant was selected. The retrieval performance was improved by adding a Boolean retrieval model based on terms related to the LCO in addition to the vector space model. The developed domain dictionary and retrieval methodology are expected to be exceedingly useful in determining whether LCO is met.

Accelerated Formation of Surface Films on the Degradation of LiCoO2 Cathode at High Temperature (표면 피막 형성이 LiCoO2 양극의 고온 열화에 미치는 영향)

  • Sung, Jong Hun;Hasan, Fuead;Yoo, Hyun Deog
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.57-65
    • /
    • 2020
  • It is crucial to investigate the thermal degradation of lithium-ion batteries (LIBs) to understand the possible malfunction at high temperature. Herein, we investigated the effects of surface film formation on the thermal degradation of lithium cobalt oxide (LiCoO2, LCO) cathode that is one of representative cathode materials. Cycling test at 60℃ exhibited poorer cycleability compared with the cycling at 25℃. Cathodes after the initial 5 cycles at 60℃ (60-LCO) exhibited higher impedance compared to the cathode after initial 5 cycles at 25℃ (25-LCO), resulting in the lower rate capability upon subsequent cycling at 25℃, although the capacity values were similar at the lowest C-rate of 0.1C. In order to understand degradation of the LCO cathode at the high temperature, we analyzed the cathodes surface using X-ray photoelectron spectroscopy (XPS). Among various peaks, intensity of lithium hydroxide (LiOH) increased substantially after the operation at 60℃, and the C-C signal that represents the conductive agent was distinctly lower on 60-LCO compared to 25-LCO. These results pointed to an excessive formation of cathode-electrolyte interphase including LiOH at 60℃, leading to the increase in the resistance and the resultant degradation in the electrochemical performances.

Spray Characteristics of a Coal Slurry with Liquid Carbon Dioxide (고압 저등급탄-이산화탄소 슬러리 분무특성에 관한 연구)

  • KIM, CHANGYEON;KIM, HAKDUCK;SONG, JUHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.357-362
    • /
    • 2015
  • There is potential method to utilize the liquid carbon dioxide ($LCO_2$) in coal gasification plants. The $LCO_2$ could be used to effectively transport coal particles instead of conventional carrier such as liquid water ($H_2O$) particularly in wet-fed gasifier. However, there is a lack of fundamental study on the atomization behavior of $LCO_2$ coal slurry under high pressure condition. In this study, the flashing spray characteristics of a coal mixture with $LCO_2$ was examined during a throttling process by using a flow visualization system. The spray of coal water slurry which is in the Rayleigh-type break up mode was significantly different. This difference indicates that the coal water slurry did not effectively transport the coal, as compared to $LCO_2$ coal slurry.

Thermodynamic Modeling and Analysis of Boil-off Gas Generation and Self-Pressurization in Liquefied Carbon Dioxide Tanks

  • Taehun Nam;Taejong Yu;Youngsub Lim
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.257-268
    • /
    • 2024
  • The importance of the safe transport of liquefied carbon dioxide (LCO2) is increasing owing to environmental issues. When transporting a low-temperature liquid, boil-off gas generation and self-pressurization occur due to heat ingress, affecting the holding time of a low-temperature liquid tank. This study developed and compared three thermodynamic self-pressurization models to estimate the holding time of LCO2: Thermal homogeneous model (THM), Thermal two-zone model (TTZM), and Thermal multi-zone model (TMZM). Thermodynamic differential equations were solved for THM, and software was used for TTZM. For TMZM, the parameters were optimized using experimental data to determine the heat ratio parameter f and heat transfer parameters K1 and K2. THM and TTZM estimated an unreasonably long holding time, approximately 42 days. The TMZM, however, showed a satisfactory holding time of 12-13 days. These results can help predict the self-pressurization in the storage tanks of LCO2 and be applied to actual LCO2 carrier cargo handling systems, with the modeling results indicating that the 12-13 days of LCO2 self-pressurization based on the TMZM appears to be the most suitable.

Lithium Lanthanum Titanate Solid Electrolyte for All-Solid-State Lithium Microbattery (전고상박막전지를 위한 (Li,La)TiO3 고체전해질의 제조와 특성)

  • 안준구;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.930-935
    • /
    • 2004
  • $({Li}_{0.5}0{La}_{0.5}){TiO}_3$ (LLTO) solid electrolyte was grown on LiCo{O}_2 (LCO) cathode films deposited on $Pt/Ti{O}-2/Si{O}_2/Si$ substrate using pulsed laser deposition for all-solid-state lithium microbattery. LLTO solid electrolyte exhibits an amorphous phase at various deposition temperatures. LLTO films deposited at 10$0^{\circ}C$ showed a clear interrace without any chemical reaction with LCO, and showed an initial discharge capacity of 50 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 90 % after 100 cycles with Li anode in 1mol$ LiCl{O}_4$ in propylene carbonate (PC). The increase of capacity retention in LLTO/LCO structure than LCO itself was attributed to the structural stability of LCO cathode films by the stacked LLTO. The cells of LLTO/LCO with LLTO grown at $100^{\circ}C$ showed a good cyclic property of 63.6 % after 300 cycles. An amorphous LLTO solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium microbattery.

Effect of the mixing ratio of positive materials of an electrode on the electrical properties in a battery capacitor

  • Jong-Kyu Lee;Kang-Min Choi;Won-su Lee;Jung-Rag Yoon
    • Journal of Ceramic Processing Research
    • /
    • v.23 no.6
    • /
    • pp.766-769
    • /
    • 2022
  • A Battery capacitor was prepared by controlling the mixing ratio of positive materials of the positive electrode to optimize cellproperties. The positive electrode was made by mixing two types of LiNi0.6Mn0.6Co0.2O2 (NMC 622) and LiCoO2 (LCO), andthe electrode was fabricated by changing the ratio of the two positive materials. Increasing of the content of LCO, decreasedthe capacity, and the retention of discharge capacity as a function of current rates did not change remarkably with anincreasing of the content LCO on the mixing ratio of positive materials. The life characteristics showed the highest capacityretention rate compared to the initial period under the condition that the ratio of NCM and LCO was 66 to 20. These resultsclearly indicate that mixing ratio of positive materials affects the electrochemical performances of battery capacitor.

Comparison of Viscosity Measurement of a Liquid Carbon Dioxide Used for a High-Pressure Coal Gasifier (고압 석탄 가스화기용 액상 이산화탄소의 점성측정 방법비교에 관한 연구)

  • KIM, KANGWOOK;KIM, CHANGYEON;KIM, HAKDUCK;SONG, JUHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.581-589
    • /
    • 2015
  • In this study, the viscosity of a liquid carbon dioxide ($LCO_2$) that can potentially be used in a wet feed coal gasifier was evaluated. A pressurized capillary viscometer was employed to obtain the viscosity data of $LCO_2$ using two different methods. During the first method, the measurements were conducted under quasi-steady and high pressure flow conditions where two-phase flow was greatly minimized. The viscosity of $LCO_2$ was determined using turbulent friction relationship. At the second flow condition where unsteady flow is induced, the viscosity of $LCO_2$ was measured using the half-time pressure decay data and was further compared with values calculated by the first method.