DOI QR코드

DOI QR Code

Thermodynamic Modeling and Analysis of Boil-off Gas Generation and Self-Pressurization in Liquefied Carbon Dioxide Tanks

  • Taehun Nam (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Taejong Yu (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Youngsub Lim (Department of Naval Architecture and Ocean Engineering, Seoul National University)
  • Received : 2024.04.03
  • Accepted : 2024.09.10
  • Published : 2024.10.31

Abstract

The importance of the safe transport of liquefied carbon dioxide (LCO2) is increasing owing to environmental issues. When transporting a low-temperature liquid, boil-off gas generation and self-pressurization occur due to heat ingress, affecting the holding time of a low-temperature liquid tank. This study developed and compared three thermodynamic self-pressurization models to estimate the holding time of LCO2: Thermal homogeneous model (THM), Thermal two-zone model (TTZM), and Thermal multi-zone model (TMZM). Thermodynamic differential equations were solved for THM, and software was used for TTZM. For TMZM, the parameters were optimized using experimental data to determine the heat ratio parameter f and heat transfer parameters K1 and K2. THM and TTZM estimated an unreasonably long holding time, approximately 42 days. The TMZM, however, showed a satisfactory holding time of 12-13 days. These results can help predict the self-pressurization in the storage tanks of LCO2 and be applied to actual LCO2 carrier cargo handling systems, with the modeling results indicating that the 12-13 days of LCO2 self-pressurization based on the TMZM appears to be the most suitable.

Keywords

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion(KIMST) funded by the Ministry of Oceans and Fisheries(2520000243), and the Korea Research Institute of Ships and Ocean engineering, grant from Endowment Project of "Technology Development of Onboard Carbon Capture and Storage System and Pilot Test" funded by Ministry of Oceans and Fisheries (PES5110). The Research Institute of Marine Systems Engineering and Institute of Engineering Research at Seoul National University provided research facilities.

References

  1. Al Ghafri, S. Z., Swanger, A., Jusko, V., Siahvasho, A., Perez, F., Johns, M. L., & May, E. F. (2022). Modelling of liquid hydrogen boil-off. Energies, 15(3), 1149. https://doi.org/10.3390/en15031149
  2. Aspelund, A., Molnvik, M. J., & De Koeijer, G. (2006). Ship transport of CO2: Technical solutions and analysis of costs, energy utilization, exergy efficiency and CO2 emissions. Chemical Engineering Research and Design, 84(9), 847-855. https://oi.org/10.1205/cherd.5147
  3. Barsi, S., & Kassemi, M. (2008). Numerical and experimental comparisions of the self-pressurization behavior of an LH2 tank in normal gravity. Cryogenicsm 48(3-4), 122-129. https://doi.org/10.1016/j.cryogenics.2008.01.003
  4. Cheon, B. H., Bang, K. J., Ki , H. G., Han, S. K., Hwang, Y. S., & Park, S. G. (2023). The development of a vertically asymmetric bi-lobe tank for large-scale LCO2 carrier. In 33rd International Ocean and Polar Engineering Conference (ISOPE-I-23-503). ISOPE.
  5. Clark, D. E., Oelkers, E. H., Gunnarsson, I., Sigfusson, B., Snaebjornsdottir, S. O., Aradottir, E. S., & Gislason, S. R. (2020). CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 C. Geochimica et Cosmochimica Acta, 279, 45-66. https://doi.org/10.1016/j.gca.2020.03.039
  6. Hastings, L. J., Flachbart, R. H., Martin, J. J., Hedayat, A., Fazah, M., Lak, T., Nguyen, H., & Bailey, J. W. (2003). Spray bar zero-gravity vent system for on-orbit liquid hydrogen storage (No. NASA/TM-2003-212926).
  7. Hegerland, G., Jorgensen, T., & Pande, J. O. (2005). - Liquefaction and handling of large amounts of CO2 for EOR. In Greenhouse Gas Control Technologies 7 (pp. 2541-2544). Elsevier Science Ltd. https://doi.org/10.1016/B978-008044704-9/50369-4
  8. Holman, J. P. (2002). Heat transfer (9th ed.). McGraw-Hill.
  9. Jung J, & Seo Y. (2022). Onboard CO2 capture process design using rigorous rate-based model. Journal of Ocean Engineering and Technology, 36(3), 168-180. https://doi.org/10.26748/KSOE.2022.006
  10. Jusko, V., Al Ghafri, S. Z.S., May, E.F. (2021). Fluid Sciences and Resources Division (BoilFAST v1.1.0). The University of Western Australia:Perth, Australia.
  11. Kartuzova, O. V., Kassemi, M., Moder, J. P., & Agui, J. H. (2014). Self-pressurization and spray cooling simulations of the multipurpose hydrogen test bed (MHTB) ground-based experiment. In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (AIAA 2014-3578). https://doi.org/10.2514/6.2014-3578
  12. Kearns, D., Liu, H., & Consoli, C (2021). Technology readiness and costs of CCS. Global CCS institute, 3.
  13. Kim, S., Lee, J. G., Kim, S., Heo, J., Bang, C. S., Lee, D. K., Lee, H., Park, G ., Lee, D. Y., & Lim, Y. (2024). Experiment and simulation of LNG self-pressurization considering temperature distribution under varying liquid lecel. Energy, 290, 130071. https://doi.org/10.1016/j.energy.2023. 130071
  14. Kongsiorden, H., Karstad, O., & Torp, T. A. (1998). Saline aquifer storage of carbon dioxide in the Sleipner project. Waste Management, 17(5-6), 303-308. https://doi.org/10.1016/S0956-053X(97)10037-X
  15. Lee, J., Son, H., Oh, J., Yu, T., Kim, H., & Lim, Y. (2024). Advanced process design of subcooling re-liquefaction system considering storage pressure for a liquefied CO2 carrier. Energy, 293, 130556. https://doi.org/10.1016/j.energy.2024.130556
  16. Matveev, K. I., & Leachman, J. W. (2023). The effect of liquid hydrogen tank size on self-pressurization and constant-pressure venting. Hydrogen, 4(3), 444-455. https://doi.org/10.3390/hydrogen4030030
  17. Nellis, G., & Klein, S., (2009). Heat transfer. Cambridge University Press.
  18. Peng, J. K., & Ahluwalia, R. K. (2013). Enhanced dormancy due to para-to-ortho hydrogen conversion on onsulated cryogenic pressure vessels for automotive applications. International journal of hydrogen energy, 38(31), 13664-13672. https://doi.org/10.1016/j.ijhydene.2013.08.039
  19. Rotenberg, Y. (1986). Numerical simulation of self pressurization in a small cryogenic tank. In Advances in Cryogenic Enfinerring: Volume 31 (pp. 963-971). Bostion, MA: Speinger US.
  20. Seo, M., & Jeong, S. (2010). Analysis of self-pressurization phenomenon of cryogenic fluid storage tank with thermal diffusion model. Cryogenics, 50(9), 549-555. https://doi.org/10.1016/j.cryogenics.2010.02.021
  21. Wang, H. R., Wang, B., Pan, Q. W., Wu, Y.Z., Jiang, L., Wang, Z. H., & Gan, Z. H. (2022). Modeling and thermodynamic analysis of thermal performance in self-pressurized liquid hydrogen tanks, International Journal of Hydrogen Energy, 47(71), 30530-30545. https://doi.org/10.1016/j.ijhydene.2022.07.027
  22. Yoo, B. Y. (2011). An experimental study on the thermocline layer in a cargo tank of CO2 carriers [Doctoral dissertation, Seoul National University]. https://www.riss.kr/link?idT12406961
  23. Yoo, B. Y., Choi, D. K., Kim, H. J., Moon, Y. S., Na, H. S., & Lee, S. G. (2013). Development of CO2 terminal and CO2 carrier for future commercialized CCS market. International Journal of Greenhouse Gas Control, 12, 323-332. https://doi.org/10.1016/j.ijggc.2012.11.008
  24. Zhu, S., Li, Y., Zhi, X., Gu, C., Tang, Y., & Qiu, L. (2020). Numerical analysis of nitrogen condensation heat transfer enhancement with liquid film fluctuation at cryogenic temperature. International Journal of Heat and Mass Transfer, 149, 119151. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119151
  25. Zuo, Z., Wu, J., & Huang, Y. (2021). Validity evaluation of popular liquid-vapor phase change models for cryogenic self-pressurization process. International Journal of Heat and Mass Transfer, 181, 121879. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121879