• Title/Summary/Keyword: $L^p$ space

Search Result 433, Processing Time 0.025 seconds

Analysis of Dark Data of the PICNIC IR Arrays in the CIBER

  • Lee, D.H.;Kim, M.G.;Tsumura, K.;Zemcov, M.;Nam, U.W.;Bock, J.;Battle, J.;Hristov, V.;Renbarger, T.;Matsumoto, T.;Sullivan, I.;Levenson, L.R.;Mason, P.;Matsuura, S.;Kim, G.H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.401-406
    • /
    • 2010
  • We have measured and analyzed the dark data of two PICNIC IR arrays (P574 and P560) obtained through the Cosmic Infrared Background ExpeRiment (CIBER). First, we identified three types of bad pixels: the cold, the hot, and the transient, which are figured in total as 0.06% for P574 and 0.19% for P560. Then, after the bad pixels were masked, we determined the dark noise to be 20.5 ${\pm}$ 0.05 $e^-$ and 16.1 ${\pm}$ 0.05 $e^-$, and the dark current to be 0.6 ${\pm}$ 0.05 $e^-$/sec and 0.7 ${\pm}$ 0.05 $e^-$/sec for P574 and P560, respectively. Finally, we discussed glitches and readout modes for a future mission.

SELF-ADJOINT INTERPOLATION ON AX = Y IN ALGL

  • Jo, Young-Soo;Kang, Joo-Ho
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.55-60
    • /
    • 2007
  • Given operators X and Y acting on a Hilbert space $\cal{H}$, an interpolating operator is a bounded operator A such that AX = Y. In this article, we showed the following : Let $\cal{L}$ be a subspace lattice acting on a Hilbert space $\cal{H}$ and let X and Y be operators in $\cal{B}(\cal{H})$. Let P be the projection onto $\bar{rangeX}$. If FE = EF for every $E\in\cal{L}$, then the following are equivalent: (1) $sup\{{{\parallel}E^{\perp}Yf\parallel\atop \parallel{E}^{\perp}Xf\parallel}\;:\;f{\in}\cal{H},\;E\in\cal{L}\}\$ < $\infty$, $\bar{range\;Y}\subset\bar{range\;X}$, and < Xf, Yg >=< Yf,Xg > for any f and g in $\cal{H}$. (2) There exists a self-adjoint operator A in Alg$\cal{L}$ such that AX = Y.

ESTIMATE FOR BILINEAR CALDERÓN-ZYGMUND OPERATOR AND ITS COMMUTATOR ON PRODUCT OF VARIABLE EXPONENT SPACES

  • Guanghui, Lu;Shuangping, Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1471-1493
    • /
    • 2022
  • The goal of this paper is to establish the boundedness of bilinear Calderón-Zygmund operator BT and its commutator [b1, b2, BT] which is generated by b1, b2 ∈ BMO(ℝn) (or ${\dot{\Lambda}}_{\alpha}$(ℝn)) and the BT on generalized variable exponent Morrey spaces 𝓛p(·),𝜑(ℝn). Under assumption that the functions 𝜑1 and 𝜑2 satisfy certain conditions, the authors proved that the BT is bounded from product of spaces 𝓛p1(·),𝜑1(ℝn)×𝓛p2(·),𝜑2(ℝn) into space 𝓛p(·),𝜑(ℝn). Furthermore, the boundedness of commutator [b1, b2, BT] on spaces Lp(·)(ℝn) and on spaces 𝓛p(·),𝜑(ℝn) is also established.

Computing the Skyline of a Point Set in $L_1$ metric space ($L_1$ 메트릭 공간에서 Skyline을 계산하는 기하 알고리즘)

  • Son, Wan-Bin;Hwang, Seung-Won;Ahn, Hee-Kap
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.474-477
    • /
    • 2011
  • 본 논문은 평면상에 주어진 자료점의 집합 P로부터 질의 집합 Q에 대해 skyline을 성질을 만족하는 P의 부분집합을 찾는 알고리즘을 제시한다. 이 때 P의 점들 간의 우위는 Q의 점에서의 거리를 이용하여 판단하는데 이 논문에서는 두 점간의 거리를 $L_1$거리로 정의한다. 이와 같은 환경 하에서 |P|$\geq$|Q|라고 가정할 때 우리는 O(|P|log|P|) 시간에 모든 skyline을 찾는 알고리즘을 제시하였다.

ERROR ESTIMATION FOR NONLINEAR ELLIPTIC PROBLEMS USING THE h-p-MIXED FINITE ELEMENT METHOD IN 3 DIMENSIONAL SPACE

  • Lee, Mi-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.237-260
    • /
    • 2001
  • The approximation properties for $L^2$-projection, Raviart-Thomas projection, and inverse inequality have been derived in 3 dimensional space. h-p-mixed finite element methods for strongly nonlinear second order elliptic problems are proposed and analyzed in 3D. Solvability and convergence of the linearized problem have been shown through duality argument and fixed point argument. The analysis is carried out in detail using Raviart-Thomas-Nedelec spaces as an example.

  • PDF

Existence theorems of an operator-valued feynman integral as an $L(L_1,C_0)$ theory

  • Ahn, Jae-Moon;Chang, Kun-Soo;Kim, Jeong-Gyoo;Ko, Jung-Won;Ryu, Kun-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.317-334
    • /
    • 1997
  • The existence of an operator-valued function space integral as an operator on $L_p(R) (1 \leq p \leq 2)$ was established for certain functionals which involved the Labesgue measure [1,2,6,7]. Johnson and Lapidus showed the existence of the integral as an operator on $L_2(R)$ for certain functionals which involved any Borel measures [5]. J. S. Chang and Johnson proved the existence of the integral as an operator from L_1(R)$ to $C_0(R)$ for certain functionals involving some Borel measures [3]. K. S. Chang and K. S. Ryu showed the existence of the integral as an operator from $L_p(R) to L_p'(R)$ for certain functionals involving some Borel measures [4].

  • PDF

A TIME-INDEPENDENT CONDITIONAL FOURIER-FEYNMAN TRANSFORM AND CONVOLUTION PRODUCT ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.179-200
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $X_n:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ by $Xn(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t$ is a partition of $[0,t]$. In the present paper, using a simple formula for the conditional expectation given the conditioning function $X_n$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions which have the form $$f((v_1,x),{\cdots},(v_r,x))\;for\;x{\in}C[0,t]$$, where {$v_1,{\cdots},v_r$} is an orthonormal subset of $L_2[0,t]$ and $f{\in}L_p(\mathbb{R}^r)$. We then investigate several relationships between the conditional Fourier-Feynman transform and the conditional convolution product of the cylinder functions.

PROXIMINALITY OF CERTAIN SPACES OF COMPACT OPERATORS

  • Cho, Chong-Man;Roh, Woo-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.65-69
    • /
    • 2001
  • For any closed subspace X of $\ell_p, \; 1<\kappa<\infty$, K(X) is proximinal in L(X), and if X is a Banach space with an unconditional shrinking basis, then K(X, c$_0$) is proximinal in L(X,$ \ell_\infty$).

  • PDF

ANALOGUE OF WIENER INTEGRAL IN THE SPACE OF SEQUENCES OF REAL NUMBERS

  • Ryu, Kun Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.65-72
    • /
    • 2012
  • Let T > 0 be given. Let $(C[0,T],m_{\varphi})$ be the analogue of Wiener measure space, associated with the Borel proba-bility measure ${\varphi}$ on ${\mathbb{R}}$, let $(L_{2}[0,T],\tilde{\omega})$ be the centered Gaussian measure space with the correlation operator $(-\frac{d^{2}}{dx^{2}})^{-1}$ and ${\el}_2,\;\tilde{m}$ be the abstract Wiener measure space. Let U be the space of all sequence $<c_{n}>$ in ${\el}_{2}$ such that the limit $lim_{{m}{\rightarrow}\infty}\;\frac{1}{m+1}\;\sum{^{m}}{_{n=0}}\;\sum_{k=0}^{n}\;c_{k}\;cos\;\frac{k{\pi}t}{T}$ converges uniformly on [0,T] and give a set function m such that for any Borel subset G of $\el_2$, $m(\mathcal{U}\cap\;P_{0}^{-1}\;o\;P_{0}(G))\;=\tilde{m}(P_{0}^{-1}\;o\;P_{0}(G))$. The goal of this note is to study the relationship among the measures $m_{\varphi},\;\tilde{\omega},\;\tilde{m}$ and $m$.