• Title/Summary/Keyword: $K{\ddot{o}}ppen$'s climate classification

Search Result 5, Processing Time 0.015 seconds

Study on the Change of Climate Zone in South Korea by the Climate Change Scenarios (기후변화시나리오를 이용한 우리나라의 기후지대 변화 연구)

  • Kim, Yongseok;Shim, Kyo-Moon;Jung, Myung-Pyo;Choi, In-Tae;Kang, Ki-Keong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.2
    • /
    • pp.37-42
    • /
    • 2017
  • In this study, we were carried out the classification of Korea's climate zone. $K{\ddot{o}}ppen$ climate classification and Warmth Index were used for classification of climate zone and we have predicted how the climate zone will be changed during the 21st century. Especially, $K{\ddot{o}}ppen$ climate classification is one of the most widely used method in the world. The climate data used monthly climate normal data (1981-2010) and future climate data (2051-2060 and 2091-2100) by considering RCP 8.5 scenarios, which was made from geospatial climate models at 1km grid cell estimated. In conclusion, the temperature will rise steadily and the climate zone will be simplified in the future as a result.

Future Projections of Köppen Climate Shifts in the Asia Regions Using A2 Scenario (A2 시나리오를 이용한 아시아 지역 기후대의 변화 전망)

  • Shin, Sang Hoon;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.3
    • /
    • pp.253-265
    • /
    • 2013
  • The objective of this study is to analyse the current climate zone applied by K$\ddot{o}$ppen climate classification and the future climate zone projected by the A2 scenario in Asia regions. The spatial and temporal variations of precipitation and temperature were also analyzed. As regards to the result of analysis on the variation of climate factor, temperature and precipitation will be increasing $4.0^{\circ}C$ and 12% respectively in the 2080s comparing with the reference period (1991~2010). Spatially, the range of temperature increase on the high latitude area is higher than that on the low latitude area. The precipitation will be increasing averagely in the overall area, but the spatial unequal distribution of precipitation will be intensified. At the result of the future climate zone, the area of warm climates will be increasing while the area of cold climates will be decreasing. In 2080s, the temperature will be increasing as much as 7.2% and 1.9% on the Tropical climates and Arid climates respectively, but it will be decreasing as -2.4%, -4.9% and -1.8% on the Warm temperate climates, Cold climates and Polar climates respectively. Furthermore, the part of Savannah climates and Desert climates will be mostly increasing. It is mainly caused by the temperature increase and desertification impact according to global warming.

The Climate of Korea in the View of the Climatic Year (연후(年候)에서 본 한국(韓國)의 기후(氣候))

  • Kang, Man-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • The climatic characteristics of Korea are analized with the data observed from 1972 to 1995 in 66 stations, using the climatic year method expressed by the $K{\ddot{o}}ppen's$ system of climatic classification. The climate of Korea is composed of the six climatic year types : Cfa, Cwa, Cwb, Dfa, Dwa and Dwb type. The Cwa and Dwa type occupy 95% occurrence frequency. The Cwa climatic year type predominates in the greater part of the Southern Area, the east slopes of the Taebaek Range and Cheju-do, the Dwa type does in Yongso Area and the northeastern part of Kyonggi Province. and the Cfa type does in Ullung-do. Such dominant climatic year regions become the stable climatic regions, while the regions where the various climatic types appear become the unstable climatic regions which are distributed in the northern part of the Southern Area and in the southern part of the Central Area owing to the shifts of the border between C type and D type. The border between C and D type is located in the Central Inland Area in the first half of the 1990's which the Cwa type predominates most. On the other hand the border is located in the middle part of the Southern Area in the first half of the 1980's which the Dwa type prevails most. Therefore the extents of the climatic year regions vary each year. In the interannual change of the main climatic year types, the Cwa type shows the increasing trend, while the Cfa and Dwa type reflets the decreasing tendency. The extending trend of the Cwa climatic year region appears during the period of the first half of the 1970's and the period between the latter half of the 1980's and the first half of the 1990's centering around the Southern Area. The Dwa climatic year region which was predominant in the Central Area in the first half of the 1980's has been reduced up till the recent years.

  • PDF

Future Projection of Climatic Zone Shifts over Korean Peninsula under the RCP8.5 Scenario using High-definition Digital Agro-climate Maps (상세 전자기후지도를 이용한 미래 한반도 기후대 변화 전망)

  • Yun, Eun-jeong;Kim, Jin-Hee;Moon, Kyung Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • It is predicted that future climate warming will occur, and the subtropical climate zone currently confined to the south coast of Korea will gradually rise north. The shift of climate zone implies a change in area for cultivating crops. This study aimed to evaluate the current and future status of climate zones based on the high-resolution climate data of South Korea to prepare adaptation measures for cultivating crops under changing agricultural climate conditions. First, the climatic maps of South and North Korea were produced by using the high-resolution monthly maximum and minimum daily temperature and monthly cumulative precipitation produced during the past 30 years (1981-2010) covering South and North Korea. Then the climate zones of the Korean Peninsula were classified based on the Köppen climate classification. Second, the changes in climate zones were predicted by using the corrected monthly climate data of the Korean Peninsula (grid resolution 30-270m) based on the RCP8.5 scenario of the Korea Meteorological Administration. Köppen climate classification was applied based on the RCP8.5 scenario, the temperature and precipitation of the Korean Peninsula would continue to increase and the climate would become simpler. It was predicted that the temperate climate, appearing in the southern region of Korea, would be gradually expanded and the most of the Korean Peninsula, excluding some areas of Hamgkyeong and Pyeongan provinces in North Korea, would be classified as a temperate climate zone between 2071 and 2100. The subarctic climate would retreat to the north and the Korean Peninsula would become warmer and wetter in general.

Studies on Changes and Future Projections of Subtropical Climate Zones and Extreme Temperature Events over South Korea Using High Resolution Climate Change Scenario Based on PRIDE Model (남한 상세 기후변화 시나리오를 이용한 아열대 기후대 및 극한기온사상의 변화에 대한 연구)

  • Park, Chang Yong;Choi, Young Eun;Kwon, Young A;Kwon, Jae Il;Lee, Han Su
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.600-614
    • /
    • 2013
  • This study aims to examine spatially-detailed changes and projection of subtropical climate zones based on the modified K$\ddot{o}$ppen-Trewartha's climate classification and extreme temperature indices using $1km{\times}1km$ high resolution RCP 4.5 and RCP 8.5 climate change scenarios based on PRIDE model over the Republic of Korea. Subtropical climate zones currently located along the southern coastal region. Future subtropical climate zones would be pushed northwards expanding to the western and the eastern coastal regions as well as some metropolitan areas. For both scenarios, the frequency of cold-related extreme temperatures projects to be reduced while the frequency of hot-related ones projects to be increased. Especially, hot days with $33^{\circ}C$ or higher temperature projects to occur more than 30 days over the most of regions except for some mountain areas with high altitudes during the period of 2070~2100. This study might provide essential information to make climate change adaptation processes be enhanced.

  • PDF