• Title/Summary/Keyword: $In_2O_3$ coating

Search Result 1,072, Processing Time 0.027 seconds

Fabrication and characterization of perovskite CH3NH3Pb1-xSbxI3-3xBr3x photovoltaic devices

  • Yamanouchi, Jun;Oku, Takeo;Ohishi, Yuya;Fukaya, Misaki;Ueoka, Naoki;Tanaka, Hiroki;Suzuki, Atsushi
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.73-81
    • /
    • 2018
  • $TiO_2/CH_3NH_3Pb_{1-x}Sb_xI_{3-3x}Br_{3x}-based$ photovoltaic devices were fabricated by a spin-coating method using mixture solutions with $SbBr_3$. Effects of $SbBr3$, CsI or RbBr addition to $CH_3NH_3PbI_3$ precursor solutions on the photovoltaic properties where investigated. The short-circuit current densities and photoconversion efficiencies were improved by adding a small amount of $SbBr_3$, CsI or RbBr to the perovskite phase, which would be due to the doping effect of Sb, Br and Cs/Rb atom at the Pb, I and $CH_3NH3$ sites, respectively.

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications (서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성)

  • Lim, Jeong-Eun;Park, Byeong-Jun;Yi, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Kim, Byung-Cheul;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.499-503
    • /
    • 2022
  • La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.

Electrochemical Characteristics of Hollow Silicon/Carbon Anode Composite for Various CTAB Amounts (CTAB 조성에 따른 할로우 실리콘/탄소 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.99-104
    • /
    • 2024
  • In this study, a carbon coated hollow silicon (HSi/C) composite material was prepared for anode material of high-capacity lithiun-ion battery. Hollow silica (HSiO2) was synthesized by the Stöber method with CTAB (N-Cetyltrimethylammonium bromide). The HSi/C anode composite was manufactured by carbon coating after magnesiothermic reduction of HSiO2. The physical and electrochemical characteristics of the prepared anode materials were investigated based on CTAB amount. In the FE-SEM analysis, it was found that the HSiO2 particle size increased as CTAB amount decreased, but shell thickness decreased. The HSi/C composites exhibited high initial discharge capacities of 1866.7, 2164.5 and 2188.6 mAh/g with various CTAB ratios (0.5, 1.0, 1.5), respectively. After 100 cycles of charge-discharge, 0.5-HSi/C demonstrated a high reversible capacity of 1171.3 mAh/g and a capacity retention of 70.9%. Electrochemical impedance spectroscopy (EIS) was employed to analyze the impedance characteristics, and it revealed that 0.5-HSi/C showed more stable resistance characteristics than HSi/C composites with other CTAB amount over 20 cycles.

Characteristics and Deposition of CuInS2 film for thin solar cells via sol-gel method0 (Sol-gel법에 의한 박막태양전지용 CuInS2 박막의 증착과 특성)

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.158-163
    • /
    • 2011
  • $CuInS_2$ thin films were prepared using a sol-gel spin-coating method. That makes large scale substrate coating, simple equipment, easy composition control available. The structural and optical properties of $CuInS_2$ thin films that include less toxic materials (S) instead of Se, tetragonal chalcopyrite structure. Copper acetate monohydrate ($Cu(CH_3COO)_2{\cdot}H2O$) and indium acetate ($In(CH_3COO)_3$) were dissolved into 2-propanol and l-propanol, respectively. The two solutions were mixed into a starting solution. The solution was dropped onto glass substrate, rotated at 3000 rpm, and dried at $300^{\circ}C$ for Cu-In as-grown films. The as-grown films were sulfurized inside a graphite container box and chalcopyrite phase of $CuInS_2$ was observed. To determine the optical properties measured optical transmittance of visible light region (380~770 nm) were less than 30 % in the overall. The XRD pattern shows that main peak was observed at Cu/In ratio 1.0 and its orientation was (112). As annealing temperature increases, the intensity of (112) plane increases. The unit cell constant are a = 5.5032 and c = 11.1064 $\AA$, and this was well matched with JCPDS card. The optical transmittance of visible region was below than 30 %.

Preparation of AI-21Ti-23Cr High Temperature Protective Coating for TiAo Intermatallic Compounds by RF Magnetron Sputtering (RF Magnetron Sputtering에 의한 금속간화합물 TiAI 모재위의 AI-21Ti-23Cr 고온내산화코팅)

  • Park, Sang-Uk;Park, Jeong-Yong;Lee, Ho-Nyeon;O, Myeong-Hun;Wi, Dang-Mun
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.742-751
    • /
    • 1996
  • Ti-48Al(at.%) specimens were coated with Al-21Ti-23Cr(at.%) film by RF magnetron sputtering. Ti-48Al specimen coated at 200, 0.8Pa and 573K showed the best oxidation resistance property in the isothermal oxidation test. Al-21Ti-23Cr film was amophous after depostion, but crystallized and fromed a protective ${Al}_{2}{O}_{3}$ layer on the surface during oxidation. Ti-48Al specimens coated at 573K have been sassessed by isothermal oxidation test for 100 hours at 1073K, 1173K and 1273K. The mass gain curves showed that parabolic stage continued at al tested temperature range in isothermal oxidation test, and the excellent oxidation resistance is attriutable to the formation of a protective ${Al}_{2}{O}_{3}$ layer on the surface of Al-21Ti-23Cr film. After oxidation test at 1273K, the matrix of Al-21Ti-23Cr film had transformed into TiAlCr phase due to the depletion of Al during oxidation and the diffusion of Ti from the substrate, and the extent of mass gain of the specimen increased compared with that of specimens tested at lower temperature.

  • PDF

Characterization for Ceramic-coated Magnets Using E-beam and Thermal Annealing Methods (마그넷 적용 세라믹 코팅 후막의 전자빔 조사 및 열 경화 방법에 따른 특성)

  • Kim, Hyug-Jong;Kim, Hee Gyu;Kang, In Gu;Kim, Min Wan;Yang, Ki Ho;Lee, Byung Cheol;Choi, Byung-Ho
    • Journal of Radiation Industry
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • Hard magnet was usually used by coating $SiO_2$ ceramic thick films followed by the thermal annealing process. In this work, the alternative annealing process for NdFeB magnets using e-beam sources (1~2 MeV, 50~400 kGy) was investigated. NdFeB magnets was coated with ceramic thick films using the spray method. The optimal annealing parameter for e-beam source reveals to be 1 MeV and 300 kGy. The sample prepared at 1 MeV and 300 kGy was characterized by the analysis of the surface morphology, film hardness, adhesion and chemical stability. The mechanical property of thick film, especially film hardness, is better than that of thermal annealed samples at $180^{\circ}C$. As a result, e-beam annealing process will be one of candidate and attractive heat treatment process. In future, manufacturing process will be carried out in cooperation with the magnet company.

AlInGaN - based multiple quantum well laser diodes for Blu-ray Disc application

  • O. H. Nam;K. H. Ha;J. S. Kwak;Lee, S.N.;Park, K.K.;T. H. Chang;S. H. Chae;Lee, W.S.;Y. J. Sung;Paek H.S.;Chae J.H.;Sakong T.;Kim, Y.;Park, Y.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.20-20
    • /
    • 2003
  • We developed 30 ㎽-AlInGaN based violet laser diodes. The fabrication procedures of the laser diodes are described as follows. Firstly, GaN layers having very low defect density were grown on sapphire substrates by lateral epitaxial overgrowth method. The typical dislocation density was about 1-3$\times$10$^{6}$ /$\textrm{cm}^2$ at the wing region. Secondly, AlInGaN laser structures were grown on LEO-GaN/sapphire substrates by MOCVD. UV activation method, instead of conventional annealing, was conducted to achieve good p-type conduction. Thirdly, ridge stripe laser structures were fabricated. The cavity mirrors were formed by cleaving method. Three pairs of SiO$_2$ and TiO$_2$ layers were deposited on the rear facet for mirror coating. Lastly, laser diode chips were mounted on AlN submount wafers by epi-down bonding method. The lifetime of the laser diodes was over 10,000 hrs at room temperature under automatic power controlled condition. We expect the performance of the LDs to be improved by the optimization of the growth and fabrication process. The detailed characteristics and important issues of the laser diodes will be discussed at the conference.

  • PDF

Hybrid Passivation for a Flexible Organic Light Emitting Diode (다층 구조의 Hybrid flexible 박막 기술 연구)

  • Lee, Whee-Won;Kim, Young-Hwan;Seo, Dae-Shik;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.269-270
    • /
    • 2005
  • A hybrid passivation method using parylene and silicon dioxide combination layer for a flexible organic light emitting diode (FOLED) was applied on a polycarbonate substrate. A parylene coating by vapor polymerization method is a highly effective passivation process for the FOLED, and it applies all top surface and the edges of the FOLED device. In order to minimize the permeation of moisture and oxygen from the top surface of the device, an additional layer of silicon dioxide was deposited over the parylene coated layer. It was found that the water vapor transmittance rate (WVTR) of parylene (15 m-in-thickness) / SiO2 (0.3$\mu$m-in-thickness) combination layers deposited on polycarbonate film was decreased under the value of 10-3 g/m2day. The FOLED with the hybrid passivation showed remarkably longer lifetime characteristics in the ambient conditions than the non-passivated FOLED. The lifetime of the passivated FOLED was 400 hours and it was more than ten times over the lifetime of the convectional non-passivated FOLED.

  • PDF

Surface Morphological Properties of Micro-arc Oxidation Coating on Al6061 Alloys using Unipolar Pulse (Unipolar pulse를 이용하여 형성된 Al6061 합금 표면의 MAO 코팅의 표면 구조에 대한 연구)

  • Kim, Nam-youl;Park, Seung-Ho;Park, Ki-Youg;Choi, Jin-Sub
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.5
    • /
    • pp.421-426
    • /
    • 2017
  • Herein, we investigated surface morphological characteristics of anodic films on Al6061 alloy prepared by unipolar pulsed Micro-arc oxidation (MAO) in a mixed solution of $Na_2SiO_3$ + KOH. The number and size of pores as well as craters on anodic alumina surface were studied as a function of different voltages, duty cycles and applied anodic current densities. The morphological characteristics of all samples were investigated by scanning electron microscopy, conforming that the most uniform surface morphology of MAO films on Al1050 alloy was obtained at high applied current density with low duty cycle.

Nanotexturing and Post-Etching for Diamond Wire Sawn Multicrystalline Silicon Solar Cell (다이아몬드 와이어에 의해 절단된 다결정 실리콘 태양전지의 나노텍스쳐링 및 후속 식각 연구)

  • Kim, Myeong-Hyun;Song, Jae-Won;Nam, Yoon-Ho;Kim, Dong-Hyung;Yu, Si-Young;Moon, Hwan-Gyun;Yoo, Bong-Young;Lee, Jung-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.3
    • /
    • pp.301-306
    • /
    • 2016
  • The effects of nanotexturing and post-etching on the reflection and quantum efficiency properties of diamond wire sawn (DWS) multicrystalline silicon (mc-Si) solar cell have been investigated. The chemical solutions, which are acidic etching solution (HF-$HNO_3$), metal assisted chemical etching (MAC etch) solutions ($AgNO_3$-HF-DI, HF-$H_2O_2$-DI) and post-etching solution (diluted KOH at $80^{\circ}C$), were used for micro- and nano-texturing at the surface of diamond wire sawn (DWS) mc-Si wafer. Experiments were performed with various post-etching time conditions in order to determine the optimized etching condition for solar cell. The reflectance of mc-Si wafer texturing with acidic etching solution showed a very high reflectance value of about 30% (w/o anti-reflection coating), which indicates the insufficient light absorption for solar cell. The formation of nano-texture on the surface of mc-Si contributed to the enhancement of light absorption. Also, post-etching time condition of 240 s was found adequate to the nano-texturing of mc-Si due to its high external quantum efficiency of about 30% at short wavelengths and high short circuit current density ($J_{sc}$) of $35.4mA/cm^2$.