• Title/Summary/Keyword: $In_2O_3$ coating

Search Result 1,072, Processing Time 0.026 seconds

Influences of Coating Cycles and Composition on the Properties of Dimensionally Stable Anode for Cathodic Protection

  • Yoo, Y.R.;Chang, H.Y.;Take, S.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • Properties of the anode for cathodic protection need low overvoltage for oxygen evolution and high corrosion resistance. It is well known that DSA (Dimensionally Stable Anode) has been the best anode ever since. DSA is mainly composed of $RuO_2$, $IrO_2$, $ZrO_2$, $Co_2O_3$, and also $Ta_2O_5$, $TiO_2$, $MnO_2$ are added to DSA for better corrosion resistance. The lifetime of DSA for cathodic protection is also one of the very important factors. $RuO_2$, $IrO_2$, $RhO_2$, $ZrO_2$ are well used for life extension, and many researches are focused on life extension by lowering oxygen evolution potential and minimizing dissolution of oxide coatings. This work aims to evaluate the influence of constituents of MMO and coating cycles and $ZrO_2$ coating on the electrochemical properties and lifetime of DSA electrodes. From the results of lifetime assessment in the anodes coated with single component, $RuO_2$ coating was more effective and showed longer lifetime than $IrO_2$ coating. Also, an increased coating cycle and an electrochemically coated $ZrO_2$ could enhance the lifetime of a DSA.

Fabrication of Sb-doped $SnO_2$ transparent conducting films by sol-gel dip coating and their characteristics (솔-젤 Dip Coating에 의한 Sb-doped $SnO_2$ 투명전도막의 제조 및 특성)

  • 임태영;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.241-246
    • /
    • 2003
  • The transparent conducting thin film of ATO (antimony-doped tin oxide) was successfully fabricated on$SiO_2$/glass substrate by a sol-gel dip coating method. The crystalline phase of the ATO thin film was identified as SnO$_2$ major phase and the film thickness was about 100 nm/layer at the withdrawal speed of 50 mm/minute. Optical transmittance and electrical resistivity of the 400 nm-thick ATO thin film which was annealed under nitrogen atmosphere were 84% and $5.0\times 10^{-3}\Omega \textrm{cm}$, respectively. It was found that the $SiO_2$ layer inhibited Na ion diffusion and the formation of impurities like $Na_2SnO_3$ or SnO while increasing Sb ion concentration and higher ratio of $Sb^{5+}/Sb^{3+}$in the film. Annealing at nitrogen atmosphere leads to the reduction of $Sn^{4+}$ as well as $Sb^{5+}$ resulting in decrease of the electrical resistivity of the film.

Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$ : (II) Composite Powders of $Al_2O_3$-$TiO_2$ ($Al_2O_3$ 로 피복시킨 세라믹 복합분체의 제조 및 특성 : (II) $Al_2O_3$-$TiO_2$ 복합분체)

  • 현상훈;정형구
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.338-346
    • /
    • 1991
  • The alumina-titania composite powders coated with Al2O3 were prepared by the method of hydrolysis-deposition of mixed aluminium salt solution of Al2(SO)4-Al(NO3)3-Urea. The effects of coating-process parameters on the characteristics of coated composite powders were also investigated. As the content of TiO2 dispersed in deionized water increased, the coated composite powders were found to be more uniform in size and unagglomerated. When TiO2 powders were coated for 30 min, the optimum TiO2 content in the coating process was 400 mg/ι. The size of TiO2 particle was increased approximately from 0.7${\mu}{\textrm}{m}$ to 1.0${\mu}{\textrm}{m}$ through coating of Al2O3. The IEP of coated composite powders was pH=8.3 identical to the value of aluminium hydroxides and the zeta-potential showed nearly similar values each other. When heat treating coated composite powders at 130$0^{\circ}C$, only two phases of TiO2(rutile) and Al2TiO5 were observed. These results showed that the suface of TiO2 could be uniformly coated with the aluminium hydroxide.

  • PDF

Cracked-Healing and Bending Strength of Si3N4 Ceramics (Si3N4 세라믹스의 균열 치유와 굽힘 강도 특성)

  • Nam, Ki-Woo;Park, Seung-Won;Do, Jae-Youn;Ahn, Seok-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.957-962
    • /
    • 2008
  • Crack-healing behavior of $Si_3N_4$ composite ceramics has been studied as functions of heat-treatment temperature and amount of additive $SiO_2$ colloidal. Results showed that optimum amount of additive $SiO_2$ colloidal and coating of $SiO_2$ colloidal on crack could significantly increase the bending strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature depends on the amount of additive $SiO_2$ colloidal. Crack healing strength was far the better cracked specimen with $SiO_2$ colloidal coating on crack surface. After heat treatment at the temperature 1,273 K in air, the crack morphology almost entirely disappeared by scanning prob microscope. At optimum healing temperature 1,273 K, the bending strength with additive $SiO_2$ colloidal 0.0 wt.% without $SiO_2$ colloidal coating recovered to the value of the smooth specimens at room temperature for the investigated crack sizes $100\;{\mu}m$. But that with $SiO_2$ colloidal coating increase up to 140 %. The amount of optimum additive $SiO_2$ colloidal was 1.3 wt.% and crack healed bending strength with $SiO_2$ colloidal coating increase up to 160 % to smooth specimen of additive $SiO_2$ colloidal 0.0 wt.%. Crack closure and rebonding of the crack due to oxidation of cracked surfaces were suggested as a dominant healing mechanism operating in $Si_3N_4$ composite ceramics.

Development and Oxidation Resistance of B-doped Silicide Coatings on Nb-based Alloy

  • Li, Xiaoxia;Zhou, Chungen
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.233-236
    • /
    • 2008
  • Halide-activated pack cementation was utilized to deposit B-doped silicide coating. The pack powders were consisted of $3Wt.c/oNH_4Cl$, 7Wt.c/oSi, $90Wt.c/oAl_2O_3+TiB_2$. B-doped silicide coating was consisted of two layers, an outer layer of $NbSi_2$ and an inner layer of $Nb_5Si_3$. Isothermal oxidation resistance of B-doped silicide coating was tested at $1250^{\circ}C$ in static air. B-doped silicide coating had excellent oxidation resistance, because continuous $SiO_2$ scale which serves as obstacle of oxygen diffusion was formed after oxidation.

Characterization of Plasma Sprayed $Cr_2O_3$ Coatings ($Cr_2O_3$계 용사분말의 제조조건 및 용사거리에 따른 플라즈마 용사 코팅층의 특성)

  • 김의준
    • Journal of Powder Materials
    • /
    • v.6 no.3
    • /
    • pp.224-230
    • /
    • 1999
  • Oxide powders of $Cr_2O_3 \;and\;Cr_2O_3+3{\%}TiO_2$ were prepared by spray drying, plasma densification and fused+crushed processes. The oxide coating layers were made by plasma spray and characterized by microstructure, hardness, adhesion strength and relative density. The optimum spray distance for the high quality coatings by spraying dried powders was found to be 9cm. A small amount addition of $TiO_2\;in\;Cr_2O_3$ powder significantly improved coating characteristics by lowering the melting point of powders. The hardness and relative density of coating layers of the plasma densified powders were comparable to fused and crushed powders, however, the adhesion strength was much higher in the former case.

  • PDF

Damage Mechanism of Particle Impact in a $Cr_2O_3$ Plasma Coated Soda-lime Glass ($Cr_2O_3$ 플라스마 용사 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Whan;Kim, Sung-Ho;Jang, Jong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.49-59
    • /
    • 1998
  • The damage mechanism of $Cr_2O_3$ plasma coated soda-lime glass and uncoated glass by steel ball particle impact was analyzed in this study. And the shape variation of the cracks was investigated by stereo-microscope according to the impact velocity and steel ball diameter. In order to improve the damage reduction effect by $Cr_2O_3$ coating layer, crack size was measured and surface erosion state was observed for both of two kinds of specimen after impact experiment. And the results were compared with each other. The 4-point bending test was performed according to ASTM D790 testing method to evaluate the effect of coating layer for bending strength variation. As a result, it was found that the crack size of $Cr_2O_3$ coated specimen was smaller than that of uncoated one, because of the impact absorption by interior pores in the coating layer and the load dispersion by the structural characteristic of the coating layer. For the specimens subjected to the steel ball impact, the bending strength of coated specimen was higher than that of uncoated specimen.

  • PDF

High Temperature Corrosion of Cr(III) Coatings in N2/0.1%H2S Gas

  • Lee, Dong Bok;Yuke, Shi
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.3
    • /
    • pp.111-116
    • /
    • 2019
  • Chromium was coated on a steel substrate by the Cr(III) electroplating method, and corroded at $500-900^{\circ}C$ for 5 h in $N_2/0.1%H_2S-mixed$ gas to study the high-temperature corrosion behavior of the Cr(III) coating in the highly corrosive $H_2S-environment$. The coating consisted of (C, O)-supersaturated, nodular chromium grains with microcracks. Corrosion was dominated by oxidation owing to thermodynamic stability of oxides compared to sulfides and nitrides. Corrosion initially led to formation of the thin $Cr_2O_3$ layer, below which (S, O)-dissolved, thin, porous region developed. As corrosion progressed, a $Fe_2Cr_2O_4$ layer formed below the $Cr_2O_3$ layer. The coating displayed relatively good corrosion resistance due to formation of the $Cr_2O_3$ scale and progressive sealing of microcracks.

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

Effect of an temperatures of post-spray heat treatment on wear behavior of $8%Y_2O_3-ZrO_2$ coating

  • Chae, Y.H.;Kim, S.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.181-182
    • /
    • 2002
  • Most recent, Plasma ceramic spray is used on parts of tribosystem, has been investigated on the tribological performance. The application of ceramic coatings by plasma spray has become essential in tribosystems to produce better wear resistance and longer life in various conditions. The purpose of this work was to investigate the wear behavior of $8%Y_2O_3-ZrO_2$ coating due to temperatures of post-spay heat treatment. The plasma-sprayed $8%Y_2O_3--Zirconia$ coating was idiscussed to know the relationship between phase transformations and temperatures of post- spray heat treatment. Wear tests was carried out with ball on disk type on normal load of 50N, 70N and 90N under room temperature. The transformation of phase and the value of residual stress were measured by X-ray diffraction method(XRD). Tribological characteristics and wear mechanisms of coatings was observed by SEM. The tribologieal wear performance was discussed a point of view for residual stress. Consequently. post-spray heat treatment plays an important role in decreasing residual stress. Residual stress in coating system has a significant influence on the wear mechanism of coating.

  • PDF