• Title/Summary/Keyword: $In_2O_3$ coating

Search Result 1,072, Processing Time 0.025 seconds

Improving Electrochemical Performance of Ni-rich Cathode Using Atomic Layer Deposition with Particle by Particle Coating Method

  • Kim, Dong Wook;Park, DaSom;Ko, Chang Hyun;Shin, Kwangsoo;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.237-245
    • /
    • 2021
  • Atomic layer deposition (ALD) enhances the stability of cathode materials via surface modification. Previous studies have demonstrated that an Ni-rich cathode, such as LiNi0.8Co0.1Mn0.1O2, is a promising candidate owing to its high capacity, but is limited by poor cycle stability. In this study, to enhance the stability of the Ni-rich cathode, synthesized LiNi0.8Co0.1Mn0.1O2 was coated with Al2O3 using ALD. Thus, the surface-modified cathode exhibited enhanced stability by protecting the interface from Ni-O formation during the cycling process. The coated LiNi0.8Co0.1Mn0.1O2 exhibited a capacity of 176 mAh g-1 at 1 C and retained up to 72% of the initial capacity after 100 cycles within a range of 2.8-4.3 V (vs Li/Li+. In contrast, pristine LiNi0.8Co0.1Mn0.1O2 presented only 58% of capacity retention after 100 cycles with an initial capacity of 173 mAh g-1. Improved cyclability may be a result of the ALD coating, which physically protects the electrode by modifying the interface, and prevents degradation by resisting side reactions that result in capacity decay. The electrochemical impedance spectra and structural and morphological analysis performed using electron microscopy and X-ray techniques establish the surface enhancement resulting from the aforementioned strategy.

Multi-layer Coating for Improvement Anti-wear Property of Graphite (흑연의 내마모성 증진을 위한 다층 코팅)

  • Suh, Im-Choon;Kim, Dong-Il;Yeh, Byung-Hahn;Jung, Bahl;Park, Chong-Ook
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.874-878
    • /
    • 1994
  • To increase the anti-oxidation and anti-wear properties of graphite for the propellant-burning environment, SiC, Pt and Al2O3 multi-layer coatings were conducted succesisvely and the optimum condition was researched. The SiC layer was produced by pack cementation and SiC layer in thickness of 30 ${\mu}{\textrm}{m}$ coating was produced after coating for 6 hours. Pt layer was coated by sputtering, and the Al2O3 layer was coated by reactive sputtering. the thickness of Pt layer and Al2O3 layer was less than one-tenth of that of SiC layer. The pack coated specimens and multi-layer coated specimens were made using above conditions and test-fired. The test result showed that the wear rate of SiC layer is approximately 1/10 compared to that of uncoated graphite.

  • PDF

Oxidation and Electrical Properties of (LaSr)(CrCo)3Coated STS-430 Steel by Plasma Spraying (플라즈마 스프레이 (LaSr)(CrCo)O3 코팅된 STS-430 합금의 고온 산화 거동 및 전기적 특성)

  • Lee, Chung-Hwan;Lim, Kyeong-Tae;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.185-190
    • /
    • 2009
  • Fe-Cr steels are the most promising candidate for interconnect in solid oxide fuel cells. In this study, an effective, dense and well adherent (LaSr)(CrCo)$O_3$ [LSCC] coating layer was produced onto 430 stainless steel (STS-430) by atmospheric plasma spraying and the oxidation behavior as well as electrical properties of the LSCC coated STS-430 were investigated. A significant oxidation of pristine STS-430 occurred at $800^{\circ}C$ in air environment, leading to the formation of $Cr_2O_3$ and $FeCr_2O_4$ scale layer up to ${\sim}7{\mu}m$ after 1200h, and consequently increased an area specific resistance of $330\;m{\Omega}{\cdot}cm^2$. Although the plasma sprayed LSCC coating contained the characteristic pore network, the coated samples presented apparent advantages in reducing oxidation growth of STS-430, resulting a decrease in oxide scale thickness of ${\sim}1{\mu}m$ at $800^{\circ}C$ after 1200h. The area specific resistance of the LSCC coated STS-430 was much reduced to ${\sim}7\;m{\Omega}{\cdot}cm^2$ after exposure at $800^{\circ}C$ for 1200h, compared to that of the pristine STS-403.

Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing (열차폐 코팅층의 고온 열충격 시험후 ECT를 이용한 결함 평가)

  • Heo, Tae-Hoon;Cho, Youn-Ho;Lee, Joon-Hyun;Oh, Jeong-Seok;Lee, Koo-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2009
  • Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and $ZrO_2-8wt%Y_2O_3$ ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until $1000^{\circ}C$ and cool until $20^{\circ}C$. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of $Al_2O_3$ is formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating.

Influence on the Chemical Durability of $B_2O_3-SiO_2$ and $Al_2O_3-SiO_2$ Thin Films at the Addition of $P_2O_5$ ($P_2O_5$의 첨가가 $B_2O_3-SiO_2$$Al_2O_3-SiO_2$ 박막의 화학적내구성에 미치는 영향)

  • 황규석;김병훈;최석진
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.615-622
    • /
    • 1993
  • In order to increase chemical durability of thin films in binary system B2O3-SiO2 and Al2O3-SiO2 on the slide glass by the dip-coating technique from TEOS(Tetraethyl Orthosilicate) and boric acid or aluminum nitrate, phosphoric acid(5~20mol%) was added, respectively. Corrosion of acid and alkali of samples treated with 1N, HCl, NaOH and distilled water at 10$0^{\circ}C$ for 15 minute, were measured IR transmittance and variance of transmittance at visible range. Surface structure of thin film was investigated with SEM and formation of crystal phase according to additiion of phosphoric acid was measrued with XRD. In Al2O3-SiO2 system, change of remarkable characteristic was not obtained at the addition of P2O5 but transmittance of thin film was decreased with addition of P2O5 in B2O3-SiO2 system.

  • PDF

Property Analysis of Solar Selective Coatings (태양 선택흡수막의 특성 분석)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.31-38
    • /
    • 2013
  • The chemical composition of the black Cr solar selective coatings electrodeposited were investigated for property analysis by using a XPS(X-ray photoelectron spectroscopy) before and after annealing in air at $300^{\circ}C{\sim}500^{\circ}C$ for 120 hours. Black Cr selective coating exposed by solar radiation for 5 months was compared with annealed sample. In addition, The Cu solar selective coatings were prepared by thermal oxidation method for low temperature application. The samples obtained were characterized by using the optical reflectance measurements by using a spectrometer. Optical properties of oxidized Cu solar coatings were solar absorptance $({\alpha}){\simeq}0.62$ and thermal emittance $({\epsilon}){\simeq}0.41(100^{\circ}C)$. In the as-prepared Cr black selective coating, the surface of the coating was found to have Cr hydroxide and Cr. The Cr hydroxide of the major component was converted to $Cr_2O_3$ or $CrO_3$ form after annealing at $500^{\circ}C$ with the desorption of water molecules. The black Cr selective coating was degraded significantly at temperature of $500^{\circ}C$. The main optical degradation modes of this coating were diffusion of Cu substrate materials.

Tribological Behavior of the Plasma Sprayed Fe$_2$O$_3$Added Zirconia Based Coatings ($Fe_2{O_3}$가 첨가된 지르코니아계 용사코팅층의 마모마찰 특성)

  • 신종한;임대순;안효석
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.84-90
    • /
    • 2000
  • High Temperature wear behavior of plasma sprayed zirconia coatings containing up to 10 mol% of Fe$_2$O$_3$ were investigated. The wear test results showed that the addition of Fe$_2$O$_3$ particles to zirconia improved the wear resistance and lowered the coefficient of friction. Optimum concentration of Fe$_2$O$_3$ was about 5 mol%. Similar degradation behavior was observed at about 40$0^{\circ}C$ for both zirconia and Fe$_2$O$_3$ added zirconia coatings. The results indicated that stabilization of tetragonal phase and changes in mechanical properties such as hardness and toughness were responsible for tribological behavior of plasma sprayed zirconia contain Fe$_2$O$_3$.

Isothermal Phase Transformation Beahviors in $Al_2O_3$ Coated Y-TZP Powders ($Al_2O_3$로 코팅된 Y-TZP 분말의 등온 상전이 거동)

  • 이종국;양권승
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.651-656
    • /
    • 1993
  • Granulated Y-TZP powders were coated by using Sol-Gel method and the coating effect of Al2O3 on the isothermal phase transformation in Al2O3 coated Y-TZP powders was investigated. During aging, tetragonal phase in Y-TZP powder were isothermally transformed to monoclinic, but the tetragonal phase in Al2O3 coated Y-TZP powders was continuously retained in spite of long aging. It can be considered that the improvement of thermal stability of tetragonal phase in Al2O3 coated Y-TZP powders may be due to the increase of constraint effect near tetragonal phase, and the suppression of surface transformation by obstructing the reaction between the surface of Y-TZP and H2O.

  • PDF

Oxidation Behaviors and Degradation Properties of Aluminide Coated Stainless Steel at High Temperature (알루미나이드 확산코팅된 스테인레스 합금의 내산화 및 내삭마 특성)

  • Hwang, Cheol Hong;Lee, Hyo Min;Oh, Jeong Seok;Hwang, Dong Hyeon;Hwang, Yu Seok;Lee, Jong Won;Choi, Jeong Mook;Park, Joon Sik
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.396-402
    • /
    • 2021
  • Stainless steel, a type of steel used for high-temperature parts, may cause damage when exposed to high temperatures, requiring additional coatings. In particular, the Cr2O3 product layer is unstable at 1000℃ and higher temperatures; therefore, it is necessary to improve the oxidation resistance. In this study, an aluminide (Fe2Al5 and FeAl3) coating layer was formed on the surface of STS 630 specimens through Al diffusion coatings from 500℃ to 700℃ for up to 25 h. Because the coating layers of Fe2Al5 and FeAl3 could not withstand temperatures above 1200℃, an Al2O3 coating layer is deposited on the surface through static oxidation treatment at 500℃ for 10 h. To confirm the ablation resistance of the resulting coating layer, dynamic flame exposure tests were conducted at 1350℃ for 5-15 min. Excellent oxidation resistance is observed in the coated base material beneath the aluminide layer. The conditions of the flame tests and coating are discussed in terms of microstructural variations.

A Study on the strengthening of titania ceramic coating layer on the steel substrate (티타니아 세라믹 熔射皮膜의 强度向上에 관한 硏究)

  • 김영식
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.181-189
    • /
    • 1992
  • The purpose of this investigation is to examine the effects of the strengthening treatments on the mechanical properties of the flame-sprayed titania ceramic coating layer. The strengthening treatments for flame sprayed specimens were carried out in 12 different conditions in vaccum furance. The mechanical properties such as microhardness, thermal shock resistance, adhesive strength and erosion resistance were tested for the sprayed specimens after strengthening treatments. And it was clear that the mechanical properties of coating layer were much improved by the strengthening treatments. The results obtained are summarized as follows; 1. It was shown that the metallurgical bond was formed between substrate and coating layer by the strengthening treatments and that thermal shock resistance and adhesive strength were remarkably raised. 2. Microhardness of coating lay was considerably increased by the strengthening treatments. 3. Erosion resistance and porosity of coating layer were slightly improved by the strengthening treatments.

  • PDF