• Title/Summary/Keyword: $In_2O_3$ coating

Search Result 1,072, Processing Time 0.028 seconds

Effect of Composition of Bond Coating on the Durability of the Plasma Sprayed $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ Thermal Barrier Coating (금속결합층의 조성이 $\textrm{ZrO}_2$-$\textrm{CeO}_2$-$\textrm{Y}_2\textrm{O}_3$ 단열층의 내구성에 미치는 영향)

  • Kim, Hye-Seong;Kim, Byeong-Hui;Seo, Dong-Su
    • Korean Journal of Materials Research
    • /
    • v.9 no.1
    • /
    • pp.73-80
    • /
    • 1999
  • The effect of alloy compositions of the bond coating on the plasma sprayed-thermal barrier coatings was investigated. The performance of the coating composed of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ and Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$was evaluated by isothermal and thermal cyclic test in an ambient atmosphere at 115$0^{\circ}C$. The failure of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coatings was occurred at the bond coating/ceramic coating interface while Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$ coating was failed at the substrate/bond coating interface after thermal cyclic test. The lifetime of Rene80/NiCrAl/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coatings was longer than Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$coating. The oxidation rate of the NiCrAl bond coating examined by TGA was lower than CoNiCrAlY bond coatings. In summary, these results suggest that Rene80/CoNiCrAlY/ZrO$_2$-CeO$_2$-Y$_2$O$_3$system as thermal barrier coating be not suitable considering the durability of the coating layer for high temperature oxidation and thermal stress.

  • PDF

Plasma Resistance of YAS (Y2O3-Al2O3-SiO2) Coating Layer with YAG Phase Contents (YAG 상함량에 따른 YAS (Y2O3-Al2O3-SiO2)계 코팅층의 내플라즈마 특성)

  • Park, Eui Keun;Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.621-626
    • /
    • 2020
  • This study is aimed at preparing and evaluating the plasma resistance of YAS (Y2O3-Al2O3-SiO2) coating layer with crystalline YAG phase contents. For this purpose, YAS frits with controlled phase contents are prepared and melt-coated on sintered Al2O3 ceramics. Then, the results of phase analysis of crystalline YAS coating layer are compared to that of YAS frits, and discussed with regard to the plasma resistance of the YAS coating layer. The phase contents of the YAS frit change in a manner different from that of the prepared YAS coating layer, presumably owing to the composition change of YAS frit during the melt-coating process. The plasma resistance of the YAS coating layer is shown to increase with the YAG phase contents in the coating layer. Comparing the weight loss of YAS coating layer with those of commercial Y2O3, Al2O3, and quartz ceramics, the plasma resistance of the prepared YAS coating layer is 8 times higher than that of quartz and 3 times higher than that of Al2O3; this layer shows 70 % of the resistance of Y2O3.

Infiltration of the Cu-Ti Alloys to Porous $Al_2O_3$ Ceramic Coating (Cu-Ti합금의 침투에 의한 $Al_2O_3$ 세라믹 용사층의 복합화)

  • 이형근;김대훈;황선효
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.213-221
    • /
    • 1992
  • Al$_{2}$O$_{3}$ ceramic coating layer by gas flame spraying was very porous, therefore it could not have wear and corrosion resistance at all. To get a dense and strong coating layer, a method to infiltrate an alloy into the pores of $Al_{2}$O$_{3}$ ceramic coating was investigated. Cu-Ti alloys, which had good wettability and reactivity with $Al_{2}$O$_{3}$ ceramic, were examined for infiltration. Infiltration of the alloys was performed in vacuum at 1100.deg.C. The melt of Cu-50 at % Ti alloy was well penetrated through the porous $Al_{2}$O$_{3}$ coating and tightly sealed the pores, unbounded area and microcracks in the coating. The alloy melt in the pores reacted with $Al_{2}$O$_{3}$ ceramic to produce a suboxide phase, Cu$_{2}$Ti$_{4}$O. This composite layer which was composed of $Al_{2}$O$_{3}$ and Cu$_{2}$Ti$_{4}$O phase had good microstructure and wear and corrosion resistance. Additionally, microstructures at interfaces between coating layers were greatly improved owing to the effect of vacuum heat treating.

  • PDF

Evaluation of wear chracteristics for $Al_{2}O_{3}-40%TiO_{2}$ sprayed on casting aluminum alloy (주조용 알루미늄합금의 $Al_{2}O_{3}-40%TiO_{2}$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.183-190
    • /
    • 1997
  • The wear behaviors of $Al_2O_3-40%TiO_2$ deposited on casting aluminum alloy(ASTM A356) by plasma spray against SiC ball have been investigated experimentally. Friction and wear tests are carried out at room temperature. The friction coefficient of $Al_2O_3-40%TiO_2$ coating is lower than that of pure $Al_2O_3$ coating(APS). It is found that low friction correspond to low wear and high friction to high wear in the experimental result. The thickness of $Al_2O_3-40%TiO_2$ coatings indicated the existence of the optimal coating thickness. It is found that a voids and porosities of coating surface result in the crack generated. As the tensile stresses in coating increased with the increased friction coefficient. The columnar grain of coating will be fractured to achieve the critical stress. It is found that the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tensile and compressire under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. This crack propagation above interface is observed in SEM.

  • PDF

Tribological Performance of A1203/Ni0r Coating

  • Chae, Young-Hun;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.911-918
    • /
    • 2002
  • The tribological performance of A1$_2$O$_3$/NiCr coating deposited on steel (SH45C) was investigated under lubrication. The parameters of sliding wear consist of normal load and coating thickness. Test result showed that there was no evidence of an improved bonding strength in the coating. However, the wear resistance of the A1$_2$O$_3$/NiCr coaling was significantly greater than that of the Al$_2$O$_3$ coating. It was eviclent that the residual stress for the A1$_2$O$_3$coating was higher than that of the A1$_2$O$_3$/NiCr coating from the Scratch test failure of coating. The bond coating played an important role in decreasing the residual stress. Also, it was found that the residual stress had d notable influence on the wear mechanism.

Evaluation of Wear Chracteristics for $Al_2O_3-40%TiO_2$Sprayed on Casted Aluminum Alloy (주조용 알루미늄 합금의 $Al_2O_3-40%TiO_2$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • The wear behavior of $Al_2$O$_3$-40%TiO$_2$deposited on casted aluminum alloy (ASTM A356) by APS (Air Plasma Spray) against SiC ball has been investigated in this work. Wear tests were carried out at room temperature. The friction coefficient of $Al_2$O$_3$-40%TiO$_2$coating is lower than that of pure $Al_2$O$_3$coating(APS). $Al_2$O$_3$-40%TiO$_2$coating indicated the existence of the optimal coating thickness. It is found that voids and pores of coating surface resulted in the generation of cracks, and the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tension and compression under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. The crack propagation above interface is observed in SEM.

Preparation and Characterization of Porous Low Reflective Coating Films for $SiO_2.ZrO_2$ System by Sol-Gel Dip-Coating Method (졸-겔 침지법에 의한 $SiO_2.ZrO_2$계 다공질 저반사 코팅막 제조 및 특성)

  • 김상진;한상목;신대용;김경남
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.774-780
    • /
    • 1997
  • Porous low reflective coating films of SiO2.ZrO2 system were prepared from the mixed alkoxide solutions of Zr(O-nC3H7)4 and partially prehydrolyzed TEOS by the sol-gel method using the dip-coating technique. In the case of 90SiO2.10ZrO2 porous coating films with HCl and H2O content was 0.3 mole and 4 mole, 378 m2/g of the specific surface area, 0.254 cm3/g of total pore volume, 30-50$\AA$ of average pore diameter. The transmittance of 90SiO2.10ZrO2 porous coated films was 95.38% at the wavelength of 550 nm, compared with the parent glass, the transmittance was increased with 4.38%.

  • PDF

Friction and Wear Characteristics of Plasma Coated Surface of Casting Aluminum Alloy (플라즈마 코팅한 주조용 알루미늄합금의 마찰 및 마멸특성)

  • Chae, Young-Hun;Ren, Jing-Ri;Park, Jun-Mock;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.791-799
    • /
    • 1997
  • The wear characteristics and wear mechanisms of plasma sprayed Al/sub 2/ O/sub 3/-40%TiO/sub 2/ and Cr/sub 2/O/sub 3/ deposited on casting aluminum alloy(AC4C) were investigated. Specimens were processed for various coating thicknesses. Ball on disk type wear tester was used for wear test. The scratch test on plasma sprayed coating surface showed that critical load to break the coating layer was greater than 40 N. The critical load increase with the increase of coating thickness of specimens. The friction coefficient of Cr/sub 2/O/sub 3/ coating layer was less than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. The wear resistance of Cr/sub 2/O/sub 3/ coating layer was greater than that of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer. Microscopic observation of worn surfaces was made by SEM. SEM observation showed that the main mechanism of wear for Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer was abrasive wear under 50 N. For the case of Al/sub 2/O/sub 3/-40%TiO/sub 2/ coating layer, as the surface cracks perpendicular to sliding direction propagated, the wear debris was generated in wear track. However, the main mechanism of wear for Cr/sub 2/O/sub 3/ coating layer was brittle fracture under 150 N.

Sliding Wear Behavior of $Al_2O_3/NiCr$ Coating ($Al_2O_3/NiCr$ 코팅의 미끄럼 마멸 특성)

  • Chae, Young-Hun;Park, Byung-Hee;Kim, Seock-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1245-1252
    • /
    • 1999
  • The sliding wear behavior of $Al_2O_3/NiCr$ coating deposited on steel(SM45C) was investigated under lubrication. The parameters of sliding wear are normal loads, coating thickness. As a result, the wear resistance of $Al_2O_3/NiCr$ coating was remarkably greater than that of $Al_2O_3$ coating. The optimized coating thickness was found to be $300{\mu}m$ to ensure good anti-wear. The bond coating played important role in decreasing residual stress. The residual stress had much influence on wear mechanism. These results were correlated with the stress state of coating and the microstructure of coating.

Effect of $Al_2O_3$ coating on the surface of $LiCoO_2$ for the cathode of lithium ion battery ($Al_2O_3$로 코팅된 $LiCoO_2$ 입자로 제조된 리튬 이온 전지의 특성에 대한 연구)

  • 오승석;변동진;이중기;조병원
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.226-226
    • /
    • 2003
  • The Commercial LiCoO$_2$ particles, which were 7.7${\mu}{\textrm}{m}$ in average diameter, were coated with $Al_2$O$_3$ by a gas suspension spray coating method. The coating amount of $Al_2$O$_3$ on the surface of LiCoO$_2$ was varied from 0.1 to 2 wt.% and compared their electrochemical characteristics with those of bare LiCoO$_2$. $Al_2$O$_3$ coating on the surface of LiCoO$_2$ increased surface area and electrical conductivity, and showed the better cycle and thermal stability even at the higher voltage. The observed optimum A1$_2$O$_3$ coating amount that exhibited the highest capacity retention was 0.2 wt.%.

  • PDF