• Title/Summary/Keyword: $H_2S$ gas sensor

Search Result 124, Processing Time 0.032 seconds

Preparation of ZnO Powders by Hydrazine Method and Its Sensitivity to C2H5OH (하이드라진 방법에 의한 ZnO 미분말의 합성 및 에탄올 감응성)

  • Kim, Sun-Jung;Lee, Jong-Heun
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.628-633
    • /
    • 2008
  • ZnO nanopowders were synthesized by the sol-gel method using hydrazine reduction, and their gas responses to 6 gases (200 ppm of $C_2H_5OH$, $CH_3COCH_3$, $H_2$, $C_3H_8$, 100 ppm of CO, and 5 ppm of $NO_2$) were measured at $300\;{\sim}\;400^{\circ}C$. The prepared ZnO nanopowders showed high gas responses to $C_2H_5OH$ and $CH_3COCH_3$ at $400^{\circ}C$. The sensing materials prepared at the compositions of [$ZnCl_2$]:[$N_2H_4$]:[NaOH] = 1:1:1 and 1:2:2 showed particularly high gas responses ($S\;=\;R_a/R_g,\;R_a$ : resistance in air, $R_g$ : resistance in gas) to 200 ppm of $C_2H_5OH$($S\;=\;102.8{\sim}160.7$) and 200 ppm of $CH_3COCH_3$($S\;= 72.6{\sim}166.2$), while they showed low gas responses to $H_2$, $C_3H_8$, CO, and $NO_2$. The reason for high sensitivity to these 2 gases was discussed in relation to the reaction mechanism, oxidation state, surface area, and particle morphology of the sensing materials.

Realization of gas sensor using LTCC(Low Temperature Cofired Ceramic) technology (LTCC 기술을 이용한 가스센서 구현)

  • Jeon, J.I.;Choi, H.J.;Lee, Y.B.;Kim, K.S.;Park, J.H.;Kim, M.Y.;Im, C.I.;Mun, J.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.369-370
    • /
    • 2005
  • LTCC (Low Temperature Cofired Ceramic) technology is one of technologies which can realize SIP (System-In-a-Package). In this paper realization of gas sensor using LTCC technology was described. In the conventional gas sensor structure, wire bonding method is generally used as an interconnection method whereas in the LTCC sensor structure, via was used for the interconnection. As sensing materials, $SnO_2$ was adopted. The effect of frit glass portion on the adhesion of the sensing material to the LTCC substrate and the electrical conductivity of the sensing material were analyzed. AgPd, PdO, Pt was added to the sensing material as an additive for improving the gas sensitivity and electrical conductivity and the effect of the amount of additives in the sensing material on the electrical conductivity was investigated. The effect of the amount of frit glass in the termination on the sensor performance, especially mechanical integrity, was considered and the crack initiation and propagation in the boundary between the sensing material and the termination was studied.

  • PDF

D-space-controlled graphene oxide hybrid membrane-loaded SnO2 nanosheets for selective H2 detection

  • Jung, Ji-Won;Jang, Ji-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.376-380
    • /
    • 2021
  • The accurate detection of hydrogen gas molecules is considered to be important for industrial safety. However, the selective detection of the gas using semiconductive metal oxides (SMOs)-based sensors is challenging. Here, we describe the fabrication of H2 sensors in which a nanocellulose/graphene oxide (GO) hybrid membrane is attached to SnO2 nanosheets (NSs). One-dimensional (1D) nanocellulose fibrils are attached to the surface of GO NSs (GONC membrane) by mixing GO and nanocellulose in a solution. The as-prepared GONC membrane is employed as a sacrificial template for SnO2 NSs as well as a molecular sieving membrane for selective H2 filtration. The combination of GONC membrane and SnO2 NSs showed substantial selectivity to hydrogen gas (Rair / Rgas > 10 @ 0.8 % H2, 100 ℃) with noise level responses to interfering gases (H2S, CO, CH3COCH3, C2H5OH, and NO2). These remarkable sensing results are attributed mainly to the molecular sieving effect of the GONC membrane. These results can facilitate the development of a highly selective H2 detector using SMO sensors.

On-line drift compensation of a tin oxide gas sensor for identification of gas mixtures (혼합가스 식별을 위한 반도체식 가스센서의 온라인 드리프트 보상)

  • Shin, Jung-Yeop;Cho, Jeong-Hwan;Jeon, Gi-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.130-132
    • /
    • 2005
  • This paper presents two ART-based neural networks for the identification of gas mixtures subject to the drift. A fuzzy ARTMAP neural network is used for classifying $H_2S$, $NH_3$ and their mixture gases including a reference gas. The other fuzzy ART neural network is utilized to detect the drift of a tin oxide gas sensor by tracking a cluster center of the reference gas. After detecting the drift, the previous cluster center of each gas is updated as much as the drift of the reference gas. By the simulations, the proposed method is shown to compensate the drift on-line without making many categories of target gases compared with the previous studies.

  • PDF

Selective NO2 Sensors Using MoS2-MoO2 Composite Yolk-shell Spheres

  • Jeong, Seong Yong;Choi, Seung Ho;Yoon, Ji-Wook;Won, Jong Min;Kang, Yun Chan;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.151-154
    • /
    • 2015
  • The gas sensing characteristic of $MoS_2-MoO_2$ composite yolk-shell spheres were investigated. $MoO_3$-carbon composite spheres were prepared by ultrasonic spray pyrolysis of aqueous droplets containing Mo-source and sucrose in nitrogen, which were converted into $MoO_3$ yolk-shell spheres by heat treatment at $400^{\circ}C$ in air. Subsequently, $MoS_2-MoO_2$ composite yolk-shell spheres were prepared by the partial sulfidation of $MoO_3$. The $MoS_2-MoO_2$ composite yolk-shell spheres showed relatively low and irreversible gas sensing characteristics at < $200^{\circ}C$. In contrast, the sensor showed high and reversible response (S=resistance ratio) to 5 ppm $NO_2$ (S=14.8) at $250^{\circ}C$ with low cross-responses (S=1.17-2.13) to other interference gases such as ethanol, CO, xylene, toluene, trimethylamine, $NH_3$, $H_2$, and HCHO. The $MoS_2-MoO_2$ composite yolk-shell spheres can be used as reliable sensors to detect $NO_2$ in a selective manner.

Fabrication and characteristics of NOx gas sensors using WO3 and In2O3 thick films to monitor air pollution

  • Son, M.W.;Choi, J.B.;Hwang, H.I.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.263-268
    • /
    • 2009
  • With the increasing number of automobiles, the problem of air pollution from the exhaust gases of automobiles has become a critical issue. The principal gases that cause air pollution are nitrogen oxide or NO$_x$(NO and NO$_2$), and CO. Because NO$_x$ gases cause acid rain and global warming and produce ozone(O$_3$) that leads to serious metropolitan smog from photochemical reaction, they must be detected and reduced. Mixtures of WO$_3$ and $In_2O_3$(WO$_3$:$In_2O_3$=10:0, 7:3, 5:5, 3:7, and 0:10 in wt.%), which are NO$_x$ gas-sensing materials, were prepared, and thick-film gas sensors that included a heater and a temperature sensor were fabricated. Their sensitivity to NO$_x$ was measured at 250$\sim$400$^{\circ}C$ for NO$_x$ concentrations of 1$\sim$5 ppm. The $In_2O_3$ thick-film sensor showed excellent sensitivity($R_{gas}/R_{air}$=10.22) at 300$^{\circ}C$ to 5-ppm NO. The response time for 70 % saturated sensitivity was about 3 seconds, and the sensors exhibited very fast reactivity to NO$_x$.

Fabrication and characteristics of La1-xSrxMO3(M = Fe, Co, Mn) formaldehyde gas sensors (La1-xSrxMO3(M = Fe, Co, Mn) 물질을 이용한 포름알데히드 가스센서의 제조와 특성)

  • Kim, H.J.;Choi, J.B.;Kim, S.D.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.203-209
    • /
    • 2008
  • Thick film formaldehyde (HCHO) gas sensors were fabricated by using $La_1_{-x}Sr_xMO_3$ (M= Fe, Co, Mn) ceramics. The powders of $La_1_{-x}Sr_xMO_3$ (M=Fe, Co, Mn) were synthesized by conventional solid-state reaction method. By using the $La_1_{-x}Sr_xMO_3$ (M=Fe, Co, Mn) paste, the thick-film formaldehyde sensors were prepared on the alumina substrate by silkscreen printing method. The experimental results revealed that $La_1_{-x}Sr_xMO_3$ (M= Fe, Co, Mn) ceramic powder has a perovskite structure and the thick-film sensor shows excellent gas-sensing characteristics to formaldehyde gas (sensitivity of $La_{0.8}Sr_{0.2}FeO_3$, S= 14.7 at operating temperature of $150^{\circ}C$ in 50 ppm HCHO ambient).

Consideration on $H_2S$ Sensing Mechanism of CuO-$SnO_2$ Thick Film through the Analysis of the Temperature-Electrical Resistance Characteristics (온도-전기저항 특성 해석을 통한 CuO-$SnO_2$ 후막 소자의 $H_2S$ 감지기구 고찰)

  • 유도준;준타마키;박수잔;노보류야마조에
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.379-384
    • /
    • 1996
  • The H2S sensing mechanism of CuO-SnO2 was confirmed by analyzing the electrical-resistance variation with temperature under an H2S atmosphere. While the resistance of CuO-SnO2 thick film at N2+H2S atmosphere was almost invariant with change in temperature it increased with increasing temperature for air +H2S atmos-phere. This behavior was analyzed using an equation derived from a basic assumption based on the H2S sensing mechanism proposed before. the experimental results are sufficiently explained with the equation derived which showed that the H2S sensing mechanism was reasonable. The equation also gave a detailed analysis and physical meaning to the behavior of the resistance variation with change in H2S concentration.

  • PDF

Fabrication of Catalytic Conbustion type Sensor and its Measuring Characteristics (접촉 연소식 가스센서의 제조 및 계측특성)

  • Lee, D.S.;Han, S.D.;Myung, K.S.;Lee, S.H.;Son, Y.M.;Lee, J.D.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.16-22
    • /
    • 1995
  • Catalytic combustion type gas sensor was fabricated by using ${\gamma}-Al_{2}O_{3}$, Pd catalyst and some binders for metane and propane detection. Using the gas sensor, digital gas meter was manufactured and tested for sensing performance. The fabricated sensor had power consumption of 700mW with applied voltage of dc 2V and the output voltage of the sensor was about 700mV for propane of 1,000ppm and 500mV for methane of 1,000ppm. In 10 cycle injection of the gases of 2,400ppm, The digital meter showed good sensitivity, linearity, and reproductivity with precision of ${\pm}25ppm({\pm}1%)$.

  • PDF

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF