DOI QR코드

DOI QR Code

Fabrication and characteristics of NOx gas sensors using WO3 and In2O3 thick films to monitor air pollution

  • Son, M.W. (Department of Materials Science and Engineering, University of Seoul) ;
  • Choi, J.B. (Department of Materials Science and Engineering, University of Seoul) ;
  • Hwang, H.I. (Convergence Components R&D Division, Korea Electronics Technology Institute) ;
  • Yoo, K.S. (Department of Materials Science and Engineering, University of Seoul)
  • 손명우 (서울시립대학교 대학원) ;
  • 최정범 (서울시립대학교 대학원) ;
  • 황학인 (전자부품연구원 융합부품연구본부) ;
  • 유광수 (서울시립대학교 교무처)
  • Published : 2009.07.31

Abstract

With the increasing number of automobiles, the problem of air pollution from the exhaust gases of automobiles has become a critical issue. The principal gases that cause air pollution are nitrogen oxide or NO$_x$(NO and NO$_2$), and CO. Because NO$_x$ gases cause acid rain and global warming and produce ozone(O$_3$) that leads to serious metropolitan smog from photochemical reaction, they must be detected and reduced. Mixtures of WO$_3$ and $In_2O_3$(WO$_3$:$In_2O_3$=10:0, 7:3, 5:5, 3:7, and 0:10 in wt.%), which are NO$_x$ gas-sensing materials, were prepared, and thick-film gas sensors that included a heater and a temperature sensor were fabricated. Their sensitivity to NO$_x$ was measured at 250$\sim$400$^{\circ}C$ for NO$_x$ concentrations of 1$\sim$5 ppm. The $In_2O_3$ thick-film sensor showed excellent sensitivity($R_{gas}/R_{air}$=10.22) at 300$^{\circ}C$ to 5-ppm NO. The response time for 70 % saturated sensitivity was about 3 seconds, and the sensors exhibited very fast reactivity to NO$_x$.

Keywords

References

  1. H. Kawasaki, T. Ueda, Y. Suda, and T. Ohshima, 'properties of metal doped tungsten oxide thin films for NOx gas sensors frown by PLD method combined with sputtering process', Sensors and Actuators B, vol. 100, pp. 266-269, 2004 https://doi.org/10.1016/j.snb.2003.12.052
  2. U. Guth and J. Zosel, 'Electrochemical solid elec-trolyte gas sensors hydrocarbon and NOx analysis in exhaust gases', Ionics, vol. 10, pp. 366-377, 2004 https://doi.org/10.1007/BF02377996
  3. D. L. West, F.C. Montgomery, and T. R. Armstrong, 'Use of La0.85Sr0.15CrO3 in high-temperature NOx sensing elements', Sensors and Actuators B, vol. 106, pp. 758-765, 2005 https://doi.org/10.1016/j.snb.2004.09.028
  4. Y. S. Yoon, T. S. Kim, and W. K. Choi, 'Structural and electrical properties of WOx thin films deposited by direct current reactive sputtering for NOx gas sensor', J. Kor. Ceram. Soc., vol. 41, no. 2, pp. 97-101, 2004 https://doi.org/10.4191/KCERS.2004.41.2.097
  5. K. S. Yoo, T. S. Kim, and H. J. Jung, 'Fabrication and gas-sensing characteristics of NOx sensors using WO3 thin films', J. Kor. Ceram. Soc., vol. 32, no. 12, pp. 1369-1376, 1995
  6. M. W. Son, J. B. Choi, H. J. Kim, S. D. Kim, and K. S. Yoo, 'Fabrication and characterization of $La_{1-x}Sr_xFeO_3$ formaldehyde gas sensors for monitoring air pollutions', J. Kor. Phys. Soc., vol. 54, no. 3 pp. 1072-1076, 2009 https://doi.org/10.3938/jkps.54.1072
  7. H. S. Hwang D. H. Yeo, H. S. Shin, Y. W. Hong, J. H. Kim, D. G. Lim, and J. T. Song, 'Characteristics of a NOx gas sensor based on a low-temperature Co-fired ceramic and ga-doped ZnO', J. Kor. Phys. Soc., vol. 53, no. 3, pp. 1384-1387, 2008 https://doi.org/10.3938/jkps.53.1384
  8. S. Zhao, J. K. O. Sin, B. Xu, M. Zhao, Z. Peng, and H. Cai, 'A high performance ethanol sensor based on field-effect transistor using a LaFeO3 nano-crystalline thin-film as a gate electrode', Sensors and Actuators B, vol 64, pp. 83-87, 2000 https://doi.org/10.1016/S0925-4005(99)00488-8
  9. F. Mitsugi, E. Hiraiwa, T. Ikegami, and K. Ebihara, 'Pulsed laser deposited WO3 thin films for gas sensor', Surface and Coatings Technology, vol. 169-170, no. 70, pp. 553-556, 2003 https://doi.org/10.1016/S0257-8972(03)00208-1
  10. H. Kawasaki, J. Namba, K. Iwatsuji, Y. Suda, K. Wada, K. Ebihara, and T. Ohshima, 'NOx gas sensing properties of tungsten oxide thin films synthesized by pulsed laser deposition method', Applied Surface Science, vol. 197-198, pp. 547-551, 2002 https://doi.org/10.1016/S0169-4332(02)00333-1
  11. T. Hyodo, S. Abe, Y. Shimizu, and M. Egashira, 'Gassensing properies of ordered mesoporous SnO2 and effects of coatings thereof', Sensors and Actuators B, vol. 93, pp. 590-600, 2003 https://doi.org/10.1016/S0925-4005(03)00208-9
  12. H. G. Moon, S. J. Yoon, H. H. Park, and J. S. Kim, 'Growth mechanism of three dimensionally structured TiO2 thin film for gas sensors', J. Kor. Sensors Soc., vol. 18, no. 2, pp. 110-115, 2009 https://doi.org/10.5369/JSST.2009.18.2.110
  13. C. Y. Jo, K. C. Park, and J. G. Kim, 'Gas sensing characteristics of Co3O4 thick films with metal oxides', J. Kor. Sensors Soc., vol. 18, no. 1, pp. 54-62, 2009 https://doi.org/10.5369/JSST.2009.18.1.054
  14. H. J. Jung and K. S. Yoo, 'Sensitivity characteristics on the composition change of the gas sensing materials based on In2O3 semiconductor', J. Kor. Ceram. Soc., vol. 22, no. 4, pp. 54-60, 1985
  15. Z. Zhong, K. Chen, Y. Ji, and W. Yan, 'Methane combustion over B-site partially substituted perovskite- type LaFeO3 prepared by sol-gel method', Applied Catalysis A: General, vol. 153, pp. 29-41, 1997

Cited by

  1. Parylene membrane based chemomechanical explosive sensor vol.19, pp.6, 2010, https://doi.org/10.5369/JSST.2010.19.6.497