• Title/Summary/Keyword: $H_2S$ analogy method

Search Result 7, Processing Time 0.024 seconds

Solubility of Hydrogen Sulfide in Aqueous Solutions of Methyldiethanolamine and diethanolamine

  • Park, Moon-Ki;Moon, Yung-Soo;Kim, Jung-Ho
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.2
    • /
    • pp.131-136
    • /
    • 1999
  • The solubility of H2S is an important parameter for modeling H2S absorption. Since the direct measurement of H2S solubility in aqueous amine solutions is impossible, this work initially attempted to develop an H2S analogy method, however, this was unsuccessful. Consequently, H2S solubilities were measured in aqueous amines which were completely protonated with HCI over a temperature range of 25-60℃. The solvents investigated in this work included 0-50% aqueous solutions of methyldiethanolamine and diethanolamine. Thereafter, a new empirical correlation was developed that can predict Henry's constant for H2S using only the solubility of H2S in water and t도 molecular weight of the aqueous solvent.

  • PDF

Natural Vibrations of Rectangular Stiffened Plates with Inner Cutouts (유공 직사각형 보강판의 진동해석)

  • K.C.,Kim;S.Y.,Han;J.H.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.35-42
    • /
    • 1987
  • For the analysis of natural vibrations of a rectangular stiffened plate with inner cutouts, an application of the Rayleigh-Ritz method is investigated. In construction of the trial function for the Rayleigh quotient, only the outer boundary conditions are satisfied with combination of Euler beam functions. As to the modeling of stiffened plates for the energy calculations, a lumping stiffener-effects method and the orthotropic plate analogy are considered for the purpose of comparison. Some numerical results obtained by the Rayleigh-Ritz method are compared with results by experiments and the finite element method. The following are major conclusions; (1) With the lumping stiffener-effects modeling the Rayleigh-Ritz method gives good results of both natural frequencies and mode shapes. The orthotropic plate analogy in cases of regularly stiffened plates is of restrictive use i.e. acceptable for a small cutout. (2) The natural frequency of a stiffened plate with inner cutouts between stiffeners is higher than that of without cutouts and increase as the hole area ratio increases as long as there are no discontinuous stiffeners due to the cutout.

  • PDF

AERODYNAMIC DESIGN OPTIMIZATION OF OA AIRFOIL USING THE RESPONSE SURFACE METHOD (반응면 기법을 사용한 OA 익형의 공력 최적 설계)

  • Sa, J.H.;Park, S.H.;Kim, C.J.;Yun, C.Y.;Kim, S.H.;Kim, S.H.;Lee, J.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.51-56
    • /
    • 2009
  • Optimization with metamodel is one of numerical optimization methods. Response surface method is performed for making metamodel. The Hcks-Henne function is used for designing 2D shape of the airfoil and spring analogy is used to change the grid according to the change in shape of the airfoil. Aerodynamic coefficient required for response surface method are obtained by using Navier-Stokes solver with $\kappa-\omega$ shear stress transport turbulence model. For the baseline airfoils, OA 312, OA 309, and OA 407 airfoils select and optimize to improve aerodynamic performance.

  • PDF

Robust Design of Pantograph Panhead Sections Considering Aerodynamic Stability and Noise (유동안정성 및 유동소음을 고려한 팬터그래프 팬헤드 단면의 강건설계)

  • 조운기;이종수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.83-91
    • /
    • 2003
  • Pantograph design Process must be considered in terms of stability of aerodynamics and reduction of aeroacoustics. Furthermore pantograph needs to be insensible to severe circumstance condition like typhoon, tunnel, a change of season. In this paper, robust design of panhead sections is conducted based on the Taguchi's design of experiment method. In the aeroacoustic noise analysis, an acoustic analogy using the Ffowcs Williams and Hawkings(FW-H) equation is used to calculate the flow induced sound pressure level in aeroacoustics. From the near-field CFD analysis data, the far-field noise is predicted at the positions of 25 m away from Pantograph. Based on aerodynamic(CFD) and aeroacoustic(FW-H) analysis data, the optimal sizing and Positioning of panhead elements are determined using robust design optimization method. Design parameters such as thickness, length and radius are controllable factors, while outdoor air temperature and atmospheric pressure are considered as uncontrollable factors in the context of Taguchi's approach. A number of CFD simulation and aeroacoustic analysis are performed based on orthogonal arrays. In this paper, two-step optimization method is used as a parameter design procedure. It is executed using signal to noise(S/N) ratio and analysis of means(ANOM) method. So Thus, an optimal level of design parameters Is extracted to minimize the disconnection ration between contact strips and catenary system, and reduce the far-field aeroacoustic noise.

A STUDY ON A GRID DEFORMATION USING RADIAL BASIS FUNCTION (Radial Basis Function을 사용한 격자 변형에 대한 연구)

  • Je, S.Y.;Jung, S.K.;Yang, Y.R.;Myong, R.S.;Cho, T.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.121-124
    • /
    • 2009
  • A moving mesh system is one of the critical parts in a computational fluid dynamics analysis. In this study, the RBF(Radial Basis Function) which shows better performance than hybrid meshes was developed to obtain the deformed grid. The RBF method can handle large mesh deformations caused by translations, rotations and deformations, both for 2D and 3D meshes. Another advantage of the method is that it can handle both structured and unstructured grids with ease. The method uses a volume spline technique to compute the deformation of block vertices and block edges, and deformed shape.

  • PDF

Prediction of Thickness and Loading Noise from Aircraft Propeller (항공기용 프로펠러에서의 두께 및 하중소음 예측)

  • Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.39-45
    • /
    • 2005
  • The aim of this research is to predict the thickness and loading noise of the round-tip shaped Hartzell propeller currently used in the general aviation aircraft. Before implementing the noise analysis, the pressure distribution on the propeller was obtained by using the free wake panel method and unsteady Bernoulli's equation. The noise signal at observer position can be obtained by using the FW-H equation. The noise prediction results for the propeller indicates that the thickness noise has s symmetric directivity pattern with respect to the tip path plane, while the noise due to loading shows higher noise directivity toward downstream than the upstream direction from the rotor plane. The loading noise is dominant rather than the thickness noise in normal operating condition.

On the Effective Shear Rigidity in Ship Vibration Analysis (선체진동해석(船體振動解析)에 있어서의 유효전단강성도(有效剪斷剛性度))

  • K.C.,Kim;S.H.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.45-53
    • /
    • 1985
  • For the analysis of vertical vibrations of a ship's hull, the Timoshenko beam analogy is accepted up to seven or eight-node modes provided that the system parameters are properly calculated. As to the shear coefficient, it has been a common practice to apply the strain energy method or the projected area method. The theoretical objection to the former is that it ignores lateral contraction due to Poisson's ratio, and the latter is of extreme simplifications. Recently, Cowper's and Stephen's shear coefficient formulas have drawn ship vibration analysts' attentions because these formulas, derivation of which are based on an integrations of the equations of three-dimensional elasticity, take Poisson's ratio into account. Providing computer programs for calculation of the shear coefficient of ship sections modeled as thin-walked multicell sections by each of the forementioned methods, the authors calculated natural vibration characteristics of a bulk carrier and of a container ship by the transfer matrix method using shear coefficients obtained by each of the methods, and discussed the results in comparision. The major conclusions resulted from this investigation are as follows: (1) The shear coefficients taking account of the effects of Poisson's ratio, Cowper's $K_c$ and Stephen's $K_s$, result in higher values of about 10% in maximum as compared with the shear coefficient $K_o$ based on the conventional strain energy methods; (a) $K_c/K_o{\cong}1.05\;and\;K_s/K_o{\cong}1.10$ for ships having single skin side-shell such as a bulk carrier. (b) $K_c/K_o{\cong}1.02\;and\;K_s/K_o{\cong}1.05$ for ships having longitudinally through bulkheads and/or double side-shells in the portion of the cargo hod such as a container carrier. (2) The distributions of the effective shear area along the ship's hull based on each of $K_o,\;K_c\;and\;K_s$ are similar each another except the both end portions. (3) Natural frequencies and mode shapes of the hull based on each of $K_c\;and\;K_s$ are of small differences as compared each other. (4) In cases of using $K_c\;or\;K_s$ in ship vibration analysis, it is also desirable to have the bending rigidity be corrected according to the effective breadth concept. And then, natural frequencies and mode shapes calculated with the bending rigidity corrected in the above and with each of $K_o,\;K_c\;and\;K_s$ result in small differences as compared each another. (5) Referring to those mentioned in the above (3) and (4) and to the full-scale experimental results reported by Asmussen et al.[17], and considering laboursome to prepare the computer input data, the following suggestions can safely be made; (a) Use of $K_o$ in ship vibration analysis is appropriate in practical senses. (b) Use of $K_c$ is appropriate even for detailed vibration analysis of a ship's hull. (6) The effective shear area based on the projected area method is acceptable for the two-node mode.

  • PDF