• Title/Summary/Keyword: $H_2PO_4^-$

Search Result 1,236, Processing Time 0.038 seconds

Enhancement of immunomodulatory activity by liposome-encapsulated natural phosphodiester bond CpG-DNA in a human B cell line

  • Kim, Dong-Bum;Rhee, Jae-Won;Kwon, Sang-Hoon;Kim, Young-Eun;Choi, Soo-Young;Park, Jin-Seu;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.43 no.4
    • /
    • pp.250-256
    • /
    • 2010
  • Natural phosphodiester bond CpG-DNA that contains immunomodulatory CpG motifs (PO-DNA) upregulates the expression of proinflammatory cytokines and induces an Ag-driven Th1 response in a CG sequence-dependent manner in mice. In humans, only phosphorothioate backbone-modified CpG-DNA (PS-DNA) and not PO-DNA has immunomodulatory activity. In this study, we found that liposome-encapsulated PO-DNA upregulated the expression of human $\beta$-defensin-2 (hBD-2) and major histocompatibility class II molecules (HLA-DRA) in a CG sequence-dependent and liposome- dependent manner in human B cells. Of the three different liposomes, DOTAP has the unique ability to enhance the immunomodulatory activity of PO-DNA. In contrast, HLA-DRA and hBD-2 promoter activation can be induced by liposome-encapsulated PS-DNA in a CG sequence-independent manner, depending on the CpG-DNA species. Our observations demonstrate that, when encapsulated with a proper liposome in the immune system, natural PO-DNA has the potential to be a useful therapy for the regulation of the innate immune response.

Isolation and Identification of Cellulase-producing Microorganism, and Determination of Optimal Culture Condition (토양으로부터 Cellulose 분해효소를 생산하는 미생물의 분리, 동정 및 최적배양조건의 결정)

  • Hahm, Byoung-Kwon;Kim, Yoon-Keun;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.1028-1032
    • /
    • 1997
  • The strain No. 33, which produces cellulose-degrading enzyme, was isolated from soil. Yellow halo was identified when the culture supernatant of the strain was loaded onto agar plate containing 2.0% CMC using paper disc method. From scanning electron microscopic observation, the morphology of the stain was rod-shaped. For identification, several biochemical characteristics were tested, and this strain was identified to Bacillus sp. So, we named this strain as Bacillus sp. No. 33. The maximal growth was observed when the stain was cultured in the medium containing 1.0% glucose, 3.0% yeast extract, 0.5% $KH_2PO_4$, 0.02% $MgSO_4{\cdot}7H_2O$, pH 7.0 at $30^{\circ}C$ for 39 hours with shaking. The maximal enzyme production was accomplished using the medium containing 4.0% CMC, 2.0% yeast extract, 0.5% $KH_2PO_4$, 0.04% $MgSO_4{\cdot}7H_2O$, pH 7.0 at $30^{\circ}C$ for 42 hours with shaking.

  • PDF

Effect of Soluble Salts and Their Concentrations on Water Absorption of Polyacrylamide Hydrogel (무기염의 종류 및 농도가 Polyacrylamide 고흡수성 수지의 수분 흡수에 미치는 영향)

  • Wang, Hyun-Jin;Choi, Jong-Myung;Lee, Jong-Suk
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2005
  • This research was conducted to determine the amount of water absorbed by a polyacrylamide hydrogel such as Stocksorb C (STSB), effect of salts on inhibition in hydration of STSB, and the hydrogel effects on changes of nutrient concentration in external solution. Absorption of deionized water by STSB reached a maximum of 180 $mL{\cdot}g^{-1}$. Monovalent soluble salts such as $KH_2PO_4,\;KNO_3$, and $(NH_4)_2SO_4$ reduced absorption of the hydrogel, but the degrees of inhibition in absorption were similar in three kinds of salts. Twenty milliequivalents per liter of $Ca_{2+}\;or\;Mg_{2+}$ reduced water absorption of STSB to $14\%$ compared to those of deionized water. Solution absorption was consistently lower in the presence of divalent cations than in the presence of the monovalent cations. But the absorption was unaffected by the uncharged salt such as urea in all concentrations tested. The final $K^+\;and\;NH_4^+-N$ concentrations of the solution remaining after absorption by STSB was higher than those of the initial solution. The soaking of STSB to full strength of Hoagland solution resulted in increase of $NO_3^--N,\;H_2PO_4^-\;and\;SO_4^{2-}$ concentrations in external solution compared to initial solution, reaching 5,300, 250 and 1,500 $mL{\cdot}g^{-1}$, respectively, at 24 hrs after soaking.

Soil Water and Nutrient Movement Model Under Different Soil Water Conditions -I. Determination of Retardation and Hydrodynamic Dispersion Coefficient of Solute of an Unsaturated Sandy Loam Soil (토양수분(土壤水分) 분포(分布)에 따른 토양내(土壤內) 양수분(養水分) 이동(移動) 모형(模型) -I. 불포화(不飽和) 토양(土壤)에서 용질(溶質)의 이동지연(移動遲延)과 수리동적(水理動的) 분산계수(分散係數)의 측정(測定))

  • Jung, Yeong-Sang;Woo, Deog-Ki;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 1990
  • Retardation and hydrodynamic dispersion coefficient necessary for model of water and solute movement in a soil were determined for horizontal soil column with different initial soil water conditions. The soil columns were compacted with sandy loam soil. The bulk density was $1,350+50kg/m^3$, and initial water contents were 0.05, 0.08 and 0.14. Advancement of 0.05% $CaSO_4$ solution was used as the standard and advancements of 0.5% KCl, $CaCl_2$ and $KH_2PO_4$ were compared. Retardation of non-reactive $Cl^-$ was related with the initial soil water content, ${\theta}n$, as ${\theta}/({\theta}-{\theta}n)$, and anion exclusion was ignored. Retardations of active $K^+$, $Ca^{{+}{+}}$ and $H_2PO_4{^-}$ were related as 1/(R+1) $^*{\theta}/({\theta}-{\theta}n)$, in which R was retardation coefficient. Measured R was 0.64 for $K^+$, 0.80 for $Ca^{{+}{+}}$ and 2.6 for $H_2PO_4{^-}$, respectively. Calculated R using Langmuir adsorption isotherm showed fair degree of applicability. Soil water diffusivity, $D({\theta}),m^2/sec$, calculated for different initial water content showed unique function as $$log(D({\theta}))=13.448{\theta}-9.288$$ Hydrodynamic dispersion coefficient of $Cl^-$ above soil water content 0.36 was similar to soil water diffusivity and decreased to near self diffusion coefficient at soil water content near 0.2. Those of $K^+$, $Ca^{{+}{+}}$ $H_2PO_4{^-}$ at soil water content of 0.38 were $5.5{\times}10^{-6}$, $2.4{\times}10^{-6}$ and $7.1{\times}10^{-7}m^2/sec$ and decreased rapidly with decreasing soil water content lower than 0.36.

  • PDF

Statistical Optimization of Medium Components for the Production of Biosurfactant by Bacillus licheniformis K51

  • Joshi Joshi;Sanket Sanket;Yadav Sanjay;Nerurkar Anuradha;Desai Anjana J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.313-319
    • /
    • 2007
  • The nutritional medium requirement for biosurfactant production by Bacillus licheniformis K51 was optimized. The important medium components, identified by the initial screening method of Plackett-Burman, were $H_3PO_4,\;CaCl_2,H_3BO_3$, and Na-EDTA. Box-Behnken response surface methodology was applied to further optimize biosurfactant production. The optimal concentrations for higher production of biosurfactants were (g/l): glucose, $1.1;NaNO_3,\;4.4;MgSO_4{\cdot}7H_2O,\;0.8;KCl,\;0.4;CaCl_2,\;0.27;H_3PO_4,\;1.0ml/l;\;and\;trace elements\;(mg/l):H_3BO_3,\;0.25;CuSO_4,\;0.6;MnSO_4,\;2.2;Na_{2}MoO_4,\;0.5;ZnSO_4,\;6.0;FeSO_4,\;8.0;CoCL_2,\;1.0;$ and Na-EDTA, 30.0. Using this statistical optimization method, the relative biosurfactant yield as critical micelle dilution (CMD) was increased from $10{\times}\;to\;105{\times}$, which is ten times higher than the non-optimized rich medium.

$K(H_{0.34}D_{0.66})PO_4$의 상전이에 따른 결정구조 변화

  • 김신애;성기훈;이창희
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.11-11
    • /
    • 2002
  • K(H/sub 0.34/D/sub 0.66/)₂PO₄는 KH₂PO₄(KDP)의 수소원자를 중수소가 일부 치환한 결정이다. 실험에 사용한 시료는 KDP 원료시약을 중수(D₂O)에서 성장시킨 것으로, 단결정 구조해석을 통해 D와 H의 점유율을 정련하였다. 본 연구에서는 상전이에 따른 결정구조의 변화를 연구하기 위하여 한국원자력연구소의 연구용 원자로인 하나로에 설치된 고분해능 분말회절장치(HRPD)로 상온에서부터 10K 까지 온도를 변화시켜가며 회절패턴을 측정하였다. 그 결과 190-l95K 사이에서 상전이가 일어났으며, 이것은 DSC(Differential Scanning Calorimetry) 측정결과와 상온에서 단결정 분석결과 D의 점유도로 계산한 상전이 온도와도 잘 일치한다. 10K와 298K에서 측정한 회절패턴에 대해 프로그램 FullProf를 사용하여 각각 리트벨트 구조정련을 수행한 결과, 상온에서는 정방정계이며 공간군은 I-42d 이고 저온에서는 사방정계인 Fdd2로 변한다. 온도변화에 따른 핵밀도 분포를 측정한 결과 상온에서 D/H는 2회 대칭축을 중심으로 50% 점유도의 두 가지 가능한 위치를 갖는 무질서(disorder) 상태로 존재하나 온도가 내려갈수록 한 쪽으로 치우쳐 상전이 온도 아래에서는 하나의 산소와 결합하여 질서(order) 상태를 보이며 다른 하나와는 수소결합을 이룬다.

  • PDF

Analysis on the Generation Characteristics of $^{14}C$ in PHWR and the Adsorption and Desorption Behavior of $^{14}C$ onto ion Exchange Resin (중수로 원전$^{14}C$ 발생 특성 및 이온교환수지에 의한 $^{14}C$$\cdot$착탈 거동 분석)

  • 이상진;양호연;김경덕
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.147-157
    • /
    • 2004
  • The production of $^{14}C$ occurs in the Moderator(MOD), Primary Heat Transport System (PHTS), Annulus Gas System(AGS) and Fuel in the CANDU reactor. Among the four systems, The MOD system is the largest contributor to $^{14}C$ production(approximately 94.8%). $^{14}C$ is distributed of $^{14}CO_2$, $H_2^{14}CO_3$, $H^{14}{CO_3}^-$ and $^{14}{CO_3}^{2-}$ species as a function of the pH of water. Of these species, $H_2^{14}CO_3$ and $H^{14}{CO_3}^-$ form are predominant because the pH of MOD system is > 5. In this paper, adsorption-desorption characteristics of bicarbonate ion (${HCO_3}^-$) by IRN 150 resin was investigated. ${HCO_3}^-$ ion existed in neutral condition(app. pH 7)was reacted with ion exchange resin (IRN-150) and saturated with it. Then $NaNO_3$ and $Na_3PO_4$ solutions selected as extraction materials were used to make an investigation into feasibility of ${HCO_3}^-$ extraction from resin saturated with ${HCO_3}^-$. Desorption of $CO^{2+}$ and $Cs^+$ ion by $Na^+$ ion was not occurred, and desorption of ${HCO_3}^-$ ion by ${NO_3}^-$ and ${PO_4}^{3-}$ was occurred slowly. Also, the status of ion exchange which is used in Wolsong NPPs and generation of spent resin yearly were surveyed.

  • PDF

Calcium Phosphate Bone Cement Based on Wet Prepared Dicalcium Phosphate

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.480-491
    • /
    • 2018
  • Calcium phosphates (CaP) were prepared by a wet chemical method. Micro-crystalline dicalcium phosphate (DCPD) was precipitated at $37^{\circ}C$ and pH 5.0 using $Ca(OH)_2$ and $H_3PO_4$. The precipitated DCPD solution was kept at $37^{\circ}C$ for 96 h. Artificial bone cement was composed of DCPD, $Ca(H_2PO_4)_2{\cdot}H_2O$ (MCPM), and $CaSO_4{\cdot}1/2H_2O$, $H_2O$ and aqueous poly-phosphoric acid solution. The wet prepared CaP powder was used as a matrix for the bone cement recipe. With the addition of aqueous poly-phosphoric acid, the cement hardening reaction was started and the CaP bone cement blocks were fabricated for the mechanical strength measurement. For the tested blocks, the mechanical strength was measured using a universal testing machine, and the microstructure phase analysis was done by field emission scanning electron microscopy and X-ray diffraction. The cement hardening reaction occurred through the decomposition and recrystallization of MCPM and $CaSO_4{\cdot}1/2H_2O$ added on the surface of the wet prepared CaP, and this resulted in grain growth in the bone cement block.

Studies on the Water Purification Using Glycine max Merr Seedling (콩(Glycine max Merr)유묘를 이용한 수질정화에 관한 연구)

  • 김순진;나규환
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.50-54
    • /
    • 1997
  • The removal efficiency of nutrient was investicated by using Glycine max Meer seedling. After budding, Glycine max Merr was raised at darkness for 4 days. During cultivation, the removal efficiency of $NO_2-N+NO_3-N$ was up to 90% with initial concentration of 20-100 ppm. The removal efficiency of PO$_4$-P was up to 80% with initial concentration at 30 ppm, but it was down to 22% and 27% at 40 ppm and 50 ppm. When the removal efficiency of nutrient was compared with alternating 12 hours' light and darkness, the removal efficiency of NO$_2$-N + NO$_3$-N was up to 90% at below 60 ppm. It was not different from each other. But it was particularly low about 62% and 34% at 80 ppm and 100 ppm in alternating 12 hours' light. The removal efficiency of PO$_4$-P was low at alternating 12 hours' light between 10-50 ppm on the whole range. The neutralizing capacity of pH was shown in acidity and alkalinity except strong acidity(below pH 3). The initial pH was neutralized at 6.0-7.7 of pH after 4 days. Particularly, Glycine max Meer seedling that was difference from other water plants, was shown the neutralizing capacity in strong alkalinity.

  • PDF

Synthesis and Electrochemical Properties of Nanocrystalline LiFePO4 Obtained by Different Methods

  • Son, C.G.;Chang, D.R.;Kim, H.S.;Lee, Y.S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • Nanocrystalline $LiFePO_4$ powders were prepared at 660-$670^{\circ}C$ in an Ar atmosphere using two different synthetic routes, solid-state and sol-gel. Both materials showed well-developed XRD patterns without any impurity peaks. Particles composed in the range of 200-300 nm from the solid-state method, and 50-100 nm from the sol-gel method, were confirmed through scanning electron microscopy and dynamic light scattering. The $LiFePO_4$ obtained by the sol-gel method offered a high discharge capacity (153 mAh/g) and stable discharge behavior, even at elevated temperatures (50 and $60^{\circ}C$), whereas poor electrochemical performance was observed from the solid-state method. Rate capability studies for sol gel-derived $LiFePO_4$ ranged from 0.2 to 30 C, which revealed excellent retention over 70 cycles with a 99.9% capacity.