• Title/Summary/Keyword: $H_2PO_4^-$

Search Result 1,236, Processing Time 0.031 seconds

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Evaluation for Impacts of Nitrogen Source to Groundwater Quality in Livestock Farming Area

  • Lee, Gyeong-Mi;Park, Sunhwa;Kim, Ki-In;Jeon, Sang-Ho;Song, Dahee;Kim, Deok-hyun;Kim, Tae-Seung;Yun, Seong-Taek;Chung, Hyen Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.345-356
    • /
    • 2017
  • We investigated 52 livestock farming complexes in Gyeong-Gi and Incheon provinces based on low, medium, and high livestock density and groundwater quality. The objective of this study was to evaluate a relationship between nitrate N concentration in groundwater and animal factors, such as livestock density and animal species. 2,200 groundwater samples for 3 years from 2012 to 2014 at Gyeong-Gi and Incheon provinces were collected and analyzed for pH, EC, DO, ORP, temperature, major anions and cations, such as $NO_3-N$, ${HCO_3}^-$, ${PO_4}^-$, ${SO_4}^{2-}$, $Cl^-$, $NH_4-N$, $K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$, T-N, and TOC. Average concentration of total N for generated load density was $23,973g\;day^{-1}\;km^{-2}$ for cattle, $51,551g\;day^{-1}\;km^{-2}$ for pig, and $52,100g\;day^{-1}\;km^{-2}$ for poultry. For animal feeding species, average ratio for generated load over discharge load was 16.1% for cattle, 7.8% for pig, and 7.1% for poultry. Therefore, cattle feeding region is highly vulnerable for water pollution compared to pig and poultry feeding areas. The concentrations of chloride, nitrate, and total N in the groundwater samples were higher at high animal farming regions than other regions. The average concentration of nitrate, and chloride in groundwater samples was $5.0mg\;L^{-1}$, $16.6mg\;L^{-1}$ for low livestock density, $6.9mg\;L^{-1}$, $17.7mg\;L^{-1}$ for medium livestock density and $7.6mg\;L^{-1}$, $22.7mg\;L^{-1}$ for high livestock density and total nitrogen (T-N) was $7.7mg\;L^{-1}$ for low livestock density, $9.4mg\;L^{-1}$ for medium livestock density, $10.7mg\;L^{-1}$ for high livestock density. In conclusion, based on this research, for managing groundwater quality near livestock farming regions, $Ca-(Cl+NO_3)$ group from the Piper diagram is more efficient than using 19 factors for water quality standard.

Effectiveness of Uniconazole(XE-1019) Treatment in Reducing Ozone Injury to Tomato Plant (Uniconazole(XE-1019) 처리가 토마토의 오존피해경감에 미치는 효과)

  • Won, Dong-Chan;Ku, Ja-Hyeong;KIm, Tae-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • To determine the efficacy of uniconzaole[(E)-1-(4-chlorophenyl)-4,4-dimethy 2-(1,2,4-triazol-1-yl)-1-penten-3-ol)](XE-1019) as a phytoprotectant against $O_3$ injury in tomato plants(Lycopersicon esculentum Mill. 'Pink Glory'), plants were given a 50ml soil drench of uniconazole solution at concentrations of 0.001, 0,01, 0.1 and 0.2mg/pot thirteen days prior to $O_3$ fumigation. All four uniconazole concentrations were effective in providing protection against $O_3$ exposure(16h at 0.3 ppm). Uniconazole treatment above 0.001 mg/pot significantly reduced stem elongation, leaf enlargement, leaf area and fresh weight of plant, whereas increased chlorophyll concentration. Transpiration rate on a whole plant basis was reduced by uniconazole treatment and $O_3$ exposure. Uniconazole reduced ethylene production induced by $O_3$ injury but had little or no effect on defoliation of cotyledons and leaf epinasty. Activities of peroxidase (POD) and superoxide dismutase(SOD) were slightly increased by application of uniconazole. With increasing exposure time, $O_3$ increased POD activity but decreased SOD activity. The phytoprotective effects of uniconazole were diminished by applying gibberellin at $10{\sim}20$ ppm. These results suggest that the phytoprotective effects of uniconazole are related to its role of increasing activities of free radical scavengers such as POD and SOD, in addition to growth-retardation as an anti-gibberellin.

  • PDF

Effects of Crude Protein Levels in Diets Containing MKP on Water Quality and the Growth of Japanese Eels Anguilla japonica and Leafy Vegetables in a Hybrid BFT-Aquaponic System (일인산칼륨(MKP)이 함유된 사료 내 단백질 수준이 Hybrid BFT 아쿠아포닉스(HBFT-AP)의 뱀장어(Anguilla japonica) 및 엽채류의 생산성과 수질변화에 미치는 영향)

  • Lee, Dong-Hoon;Kim, Jin-Young;Lim, Seong-Ryul;Kim, Kwang-Bae;Kim, Joo-Min;Hariati, Anik M.;Kim, Dong-Woo;Kim, Jeong-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.4
    • /
    • pp.606-619
    • /
    • 2020
  • This study investigated the effects of crude protein levels in diets containing monobasic potassium phosphate (MKP) on water quality and the growth of Japanese eels Anguilla japonica and leafy vegetables in a Hybrid BFT-Aquaponics (HBFT-AP) system. The first experiment (EXP1) was designed to verify the effects of the feed itself on leafy vegetable productivity using two diets (CP48 and CP30) with MKP and one commercial eel diet (COM58). The second experiment (EXP2) examined the effects of the three diets on productivity of the fish and leafy vegetables in the HBFT-AP for 6 weeks. After the 6 week feeding trial, the weight gain, feed efficiency, specific growth rate and protein efficiency ratio of fish fed COM58 and CP48 were higher than those of fish fed CP30 (P<0.05) and the growth of the four leafy vegetables was the highest with fish fed CP48. Water quality was measured six times per week using a portable water quality meter and reagent measurements and showed variance with time for TAN (0.01-0.09 mg/L), NO2-N (0.010-0.064 mg/L), NO3-N (5.52-27.15 mg/L), PO4-P (2.03-5.32 mg/L) and pH (7.86-6.15).

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

EFFECTS OF SURFACE TREATMENTS AND STORAGE CONDITIONS ON TARGIS/DENTIN BOND STRENGTH (Targis 표면처리가 상아질과의 전단결합강도에 미치는 영향)

  • Oh, Young-Taek;Hwang, Su-Jin;Lee, Se-Joon;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.2
    • /
    • pp.262-271
    • /
    • 2000
  • The purpose of this study was to estimate shear bond strength according to difference in Targis surface treatment and storage condition. 140 non-carious extracted human molars and Targis D210(Ivoclar, Liechtenstein) were used in the present study and were divided into 7 experimental groups respectively according to surface treatment of Targis. Group 1 ; No treatment, Group 2 ; $50{\mu}m$ aluminium oxide blasting, Group 3 ; 4% HF etching for 3 minutes, Group 4 ; 4% HF etching after blasting, Group 5 ; silane treatment after blasting, Group 6 ; silane treatment after 4% HF etching, Group 7 ; silane treatment after blasting and 4% HF etching. In Each group, one half of 20 specimens was stored in distilled water at $37^{\circ}C$ for 24 hours and the other half was stored at atmosphere for 24 hours respectively. Dentin surface was etched with 10% $H_3PO_4$ for 15 seconds and luting cement(Variolink II, Vivadent, Liechtenstein) was applied by manufacturer's recommendation. Shear bond strength for each group was then measured. To examine the failure patterns after shear bond test and to observe the change after surface treatment of Targis. Specimens were fabricated and observed under the SEM. Statistical analysis was performed by One Way ANOVA test and t-test. The results were as follows ; 1. The shear bond strength of the groups stored in water significantly lower than that of groups stored at atmosphere (P<0.05). 2. There was no significant difference in shear bond strength in groups stored in water (P>0.05). 3. The shear bond strength without surface treatment of Targis were lowest among all experimental groups in atmosphere condition(P<0.05). 4. There was no significant difference in bond strength between groups using the silane or not(P>0.05). 5. The groups treated by blasting, hydrofluoric acid and silane sequentially showed highest bond strength than that of other groups in atmosphere condition, but there was no significant difference(P>0.05). 6 The proportions of the specimens showing the mixed fracture failure were 20% in HF etching group and blasting + HF group, 40% in blasting + HF + silane group in atmosphere condition. All the specimens stored in water showed adhesive fracture failure.

  • PDF

Identification of Chloride Channels in Hamster Eggs (햄스터 난자에서 존재하는 Chloride 통로)

  • Kim, Y.-M.;Kim, J.-S.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.101-112
    • /
    • 2004
  • Chloride($Cl^-$) channels play critical roles in cell homeostasis and its specific functions such as volume regulation, differentiation, secretion, and membrane stabilization. The presence of these channels have been reported in all kinds of cells and even in frog oocytes. These essential role of $Cl^-$­ channels in cell homeostasis possibly play any role in egg homeostasis and in the early stage of development, however, there has been no report about the presence of $Cl^-$­ channel in the mammalian oocyte. This study was performed to elucidate the presence of $Cl^-$­ channels in hamster eggs. When allowing only $Cl^-$­ to pass through the channel of the egg membrane by using impermeant cation such as N-methyl-D-glucamine(NMDG), single channel currents were recorded. These channel currents showed typical long-lasted openings interrupted by rapid flickering. Mean open $time({\tau}o)$ was 43${\pm}$10.14 ms(n=9, at 50 mV). The open probability(Po) was decrease with depolarization. The current-voltage relation showed outward rectification. Outward slop conductance(32${\pm}$5.4 pS, n=22) was steeper than the inward slop conductance(10${\pm}$1.3 pS). Under the condition of symmetrical 140 mM NaCl, single channel currents were reversed at 0 mV(n=4). This reversal potential(Erev) was shifted from 0 mV at 140 mM concentration of internal NaCl(140 mM [Na+]i) to ­9.8${\pm}$0.5 mV(n=4) at 70 mM [Na+]i and 11.5${\pm}$1.9 mV at 280 mM [Na+]i(n=4) respectively, strongly suggesting that these are single $Cl^-$­ channel currents. To examine further whether this channel has pharmacological property of the $Cl^-$­ channel, specific Cl­ channel blockers, IAA-94(Indanyloxyacetic acid-94) and DIDS(4, 4'-diisothiocyan ostillben- 2-2'disulfonic acid) were applied. IAA-94 inhibited the channel current in a dose-dependent manner and revealed a rapid and flickering block. From these electrophysiological and pharmacological resluts, we found the novel $Cl^-$­ channel present in the hamster oocyte membrane. The first identification of $Cl^-$­ channel in the hamster oocyte may give a clue for the further study on the function of $Cl^-$­ channel in the fertilization and cell differentiation.

Effects of Extraction Conditions on the Functional Properties of Garlic Extracts (추출조건이 마늘 추출액의 기능성에 미치는 영향)

  • Byun, Pyung-Hwa;Kim, Woo-Jung;Yoon, Suk-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.507-513
    • /
    • 2001
  • An effective extraction methods of a garlic were investigated in order to improve the functional properties of the extracts. The solid yield, electron donating ability (EDA), nitrite-scavenging effects (NSE), peroxide value (POV) and total thiosulfinates contents of garlic extracts were determined. In order to improve the functional properties of extracts prepared with several organic solvents and acids, concentration and pH adjustment of the selected solvent and addition of acids and salts to solvents were also examined. Among the solvents tested, the methanol and ethanol extracts were found to be the most effective on the base of functionality and solid yields. The highest EDA, NSE and thiosulfinate value were obtained with 50% ethanol. The pH control of solvent and addition of citric acid, NaCl and phosphates to 50% ethanol did not affect on the functionality of the extracts. Therefore the optimal solvent for the best functional properties of garlic extract was 50% ethanol.

  • PDF

Seasonal Characteristics of Phytoplankton Dynamics and Environmental Factors in the Coast of Mara-do and U-do, Jeju Island, Korea

  • Affan, Abu;Lee, Joon-Baek
    • ALGAE
    • /
    • v.19 no.3
    • /
    • pp.235-245
    • /
    • 2004
  • A study on seasonal characteristics of phytoplankton dynamics and environmental factors was carried out at four stations including Mara-do and U-do located in the western and eastern coast of Jeju Island in southern Korea from April 2003 to March 2004. Out of 101 phytoplankton species identified, 84 belong to Bacillariophyceae, 9 Dinophyceae, 6 phytoflagellates and 2 coccolithophorids, and the highest value of species diversity was observed in April. Phytoplankton was more abundant at the western coast than at the eastern coast from March to September and its highest abundance was 49.24 ${\times}$ 10$^3$ cells L$^{-1}$ at Mara-do in July. The pennate diatoms were more abundant at the western coast than at the eastern coast with the highest abundance of 38.75 ${\times}$ 10$^3$ cells L$^{-1}$ at Mara-do in July, and during this period Nitzschia longissima contributed 68.5% of the total phytoplankton abundance. Naviculaceae was more abundant at Gosan (western coast) in November when Stauroneis membranacea represented 80.1% of the abundance. Leptocylindrus dances contributed 49.4% of the abundance at U-do in November. Dinophyceae was more abundant at U-do in August. Water temperature and pH fluctuated from 11.7${^{\circ}C}$ to 27.1${^{\circ}C}$ and from 7.31 to 8.70, respectively. Water temperature of Mara-do was about 1-2${^{\circ}C}$ higher than the other stations. Salinity varied from 30.4 to 35.0 psu with the minimum in rainy season and the maximum at the end of winter. The concentration of NH$_4$-N, NO$_3$-N, NO$_2$-N, PO$_4$-P and SiO$_2$-Si ranged 0.07-6.79, 1.0-62.0, 1.0-8.0, 1.0-7.0 and 7.0-191.0 $\mu$g-at L$^{-1}$, respectively. Chlorophyll a concentrations varied from 0.10 to 1.17 $\mu$g L$^{-1}$. NH$_4$-N concentrations were high at U-do from May to December, and at Mara-do from January to February. The high concentrations of NO$_3$-N were found at Mara-do from June to September and at U-do from January to May. The effects of various physicochemical parameters on the seasonal distribution and succession of phytoplankton population suggest that there is a classical pattern of phytoplankton dynamics in Jeju coastal waters.

Dismantling and Restoration of the Celadon Stool Treasure with an Openwork Ring Design (보물 청자 투각고리문 의자의 해체 및 복원)

  • KWON, Ohyoung;LEE, Sunmyung;LEE, Jangjon;PARK, Younghwan
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.2
    • /
    • pp.200-211
    • /
    • 2022
  • The celadon stools with an openwork ring design which consist of four items as one collection were excavated from Gaeseong, Gyeonggi-do Province. The celadon stools were designated and managed as treasures due to their high arthistorical value in the form of demonstrating the excellence of celadon manufacturing techniques and the fanciful lifestyles during the Goryeo Dynasty. However, one of the items, which appeared to have been repaired and restored in the past, suffered a decline in aesthetic value due to the aging of the treatment materials and the lack of skill on the part of the conservator, raising the need for re-treatment as a result of structural instability. An examination of the conservation condition prior to conservation treatment found structural vulnerabilities because physical damage had been artificially inflicted throughout the area that was rendered defective at the time of manufacturing. The bonded surfaces for the cracked areas and detached fragments did not fit, and these areas and fragments had deteriorated because the adhesive trickled down onto the celadon surface or secondary contaminants, such as dust, were on the adhesive surface. The study identified the position, scope, and conditions of the bonded areas at the cracks UV rays and microscopy in order to investigate the condition of repair and restoration. By conducting Fourier-transform infrared spectroscopy(FT-IR) and portable x-ray fluorescence spectroscopy on the materials used for the former conservation treatment, the study confirmed the use of cellulose resins and epoxy resins as adhesives. Furthermore, the analysis revealed the addition of gypsum(CaSO4·2H2O) and bone meal(Ca10 (PO4)6(OH)2) to the adhesive to increase the bonding strength of some of the bonded areas that sustained force. Based on the results of the investigation, the conservation treatment for the artifact would focus on completely dismantling the existing bonded areas and then consolidating vulnerable areas through bonding and restoration. After removing and dismantling the prior adhesive used, the celadon stool was separated into 6 large fragments including the top and bottom, the curved legs, and some of the ring design. After dismantling, the remaining adhesive and contaminants were chemically and physically removed, and a steam cleaner was used to clean the fractured surfaces to increase the bonding efficacy of the re-bonding. The bonding of the artifact involved applying the adhesive differently depending on the bonding area and size. The cyanoacrylate resin Loctite 401 was used on the bonding area that held the positions of the fragments, while the acrylic resin Paraloid B-72 20%(in xylene) was treated on cross sections for reversibility in the areas that provided structural stability before bonding the fragments using the epoxy resin Epo-tek 301-2. For areas that would sustain force, as in the top and bottom, kaolin was added to Epo-tek 301-2 in order to reinforce the bonding strength. For the missing parts of the ring design where a continuous pattern could be assumed, a frame was made using SN-sheets, and the ring design was then modeled and restored by connecting the damaged cross section with Wood epos. Other restoration areas that occurred during bonding were treated by being filled with Wood epos for aesthetic and structural stabilization. Restored and filled areas were color-matched to avoid the feeling of disharmony from differences of texture in case of exhibitions in the future. The investigation and treatment process involving a variety of scientific technology was systematically documented so as to be utilized as basic data for the conservation and maintenance.