• Title/Summary/Keyword: $H_2O$ soluble

Search Result 445, Processing Time 0.025 seconds

Anti-oxidative Effects of Allium hookeri Leaves in Caenorhabditis elegans (삼채 잎의 예쁜꼬마선충 내의 항산화 효과)

  • Ki, Byeolhui;Lee, Eun Byeol;Kim, Jun Hyeong;Yang, Jae Heon;Kim, Dae Keun;Kim, Young-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.48 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • As an ongoing study about Allium hookeri (Liliaceae), this study was performed to evaluate the anti-oxidative effect of the leaves of this plant. Ethanol extract of A. hookeri leaves was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. The ethyl acetate soluble fraction showed the most potent DPPH radical scavenging and superoxide quenching activities among those fractions. To prove antioxidant activity of ethyl acetate fraction of A. hookeri leaves, we checked the activities of superoxide dismutase (SOD) and catalase, and intracellular ROS level and oxidative stress tolerance in Caenorhabditis elegans. In addition, to verify if increased stress tolerance of C. elegans by treating of ethyl acetate fraction was due to regulation of stress-response gene, we checked SOD-3 expression using transgenic strain. As a consequence, the ethyl acetate fraction increased SOD and catalase activity of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Besides, the ethyl acetate fraction-treated CF1553 worms showed higher SOD-3::GFP intensity.

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.

Effect of Treatment with Selected Plant Extracts on the Physiological and Biochemical Parameters of Rice Plants under Salt Stress

  • Hyun-Hwa Park;Pyae Pyae Win;Yong-In Kuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • High soil salinity is the most severe threat to global rice production as it causes a significant decline in rice yield. Here, we investigated the effects of various plant extracts on rice plant stress associated with high salinity. Additionally, we examined various physiological and biochemical parameters such as growth, photosynthetic activity, chlorophyll content, and lipid peroxidation - in rice plants after treatment with selected plant extracts under salt stress conditions. Of the 11 extracts tested, four - soybean leaf, soybean stem, moringa (Moringa oleifera), and Undaria pinnatifida extracts - were found to effectively reduce salt stress. A reduction of only 3-23% in shoot fresh weight was observed in rice plants under salt stress that were treated with these extracts, compared to the 43% reduction observed in plants that were exposed to stress but not given plant extract treatments (control plants). The effectiveness varied with the concentration of the plant extracts. Water content was higher in rice plants treated with the extracts than in the control plants after 6 d of salt stress, but not after 4 d of salt stress. Although photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), and the content of pigments (chlorophyll and carotenoid) varied based on the types and levels of stress and the extracts that the rice plants were treated with, generally, photosynthetic efficiency and pigment content were higher in the treated rice compared to control plants. Reactive oxygen species (ROS), such as superoxide radicals, hydrogen peroxide (H2O2), and malondialdehyde (MDA), increased as the duration of stress increased. ROS and MDA levels were lower in the treated rice than in the control plants. Proline and soluble sugar accumulation also increased with the duration of the stress period. However, proline and soluble sugar accumulation were lower in the treated rice than in the control plants. Generally, the values of all the parameters investigated in this study were similar, regardless of the plant extract used to treat the rice plants. Thus, the extracts found to be effective can be used to alleviate the adverse effects of stress on rice crops associated with high-salinity soils.

The Stability of Aging and Synthetic Development of Paper Mending Tape for Conservation of Archive Document (종이 기록물 보수용 테이프 점착제 합성 및 열화 안전성 연구)

  • Shin, Joung-Soon;Lee, Kwi-Bok
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.1
    • /
    • pp.35-45
    • /
    • 2012
  • Polyacrylate dispersion(emulsion) as adhesive material was superior in quality such as preservation characteristics and reversibility. The tapes for repairing archival documents manufactured with four different types of formulation resulted in pH 7~8.8, soluble solid 50~52%, and viscosity 1,300~2,500 cps. Sample 4 of those was most excellent. Probably, sample 4 included inorganic materials such as MgO, silica gel, and zeolite. For selecting carrier of tape, tracing papers, were applied for manufacturing tapes and tested for adhesive strength and peel strength. Adhesive strength of tracing papers, was 3.1~3.8(N/10mm), 2.2~2.8(N/10mm), and 1.7-2.3(N/10mm), respectively. Peel strength was similar in all samples. To determine characteristic of conservation to the selected carriers, stability of deterioration was examined at conditions of $105^{\circ}C$ and $80^{\circ}C$ 65% for 7 days.

Gas Separation Properties of 6FDA-Based Polyimide Membranes with a Polar Group

  • Park, Sang-Hee;Kim, Kwang-Je;So, Won-Wook;Moon, Sang-Jin;Lee, Soo-Bok
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.157-162
    • /
    • 2003
  • 6FDA-based polyimides were prepared from the thermal imidization reaction of 6FDA with diamines of BAPAF, DAP, and DABA having a polar group of hydroxyL or carboxyl. Properties of the dense polyimide membranes were characterized and their gas permeation properties for H$_2$, $CO_2$, $O_2$, $N_2$, and CH$_4$ were investigated. Permeabilities, diffusion coefficients and diffusivity selectivities of polar group-containing polyimide membranes including 6FDA-BAPAF, 6FDA-DAP, and 6FDA-DABA polymer for the gases did not change largely. The separation properties of 6FDA-TrMPD polyimide membrane used as a reference polymer were compared with those of the polyimide membranes mentioned above. It was found that the polyimides of 6FDA-BAPAF, 6FDA-DAP, and 6FDA-DABA, which were soluble in alcohol or/and 2-methoxyethanol, could be applicable to the preparation of a dense composite membrane by dip-coating method.

Analysis of Higenamine Contents in Plants with HPLC and GC/MSD (HPLC 및 GC/MSD를 이용한 식물 중의 Higenamine 함량 분석)

  • YunChoi, Hye-Sook;Suh, Young-Bae;Hahn, Young-Hee;Song, Yun-Seon;Ryu, Jae-Chun;Chung, Kyo-Soon
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 1998
  • Higenamine is known as a cardiotonic principle of Aconiti tuber. The analytical procedures were established for the detection of higenamine in plants. The amounts of higenamine in several Aconiti tubers and the embryo of Nelumbo nucifera, another plant species known to contain higenamine, were determined. The $H_2O$ soluble fraction prepared from MeOH extract was first treated with AD-2 resin and then applied to either HPLC or GC/MSD systems. With HPLC, $6.4{\sim}19.2\;{\mu}g/g$ of higenamine were detected from various Aconiti tubers and $182.3\;{\mu}g/g$ of higenamine from the embryo of Nelumbo nucifera. The results obtained with GC/MSD also provided comparable data with those obtained with HPLC.

  • PDF

Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments (철환원 박테리아에 의한 금속 환원 및 광물형성)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2002
  • Microbial metal reduction influences the biogeochemical cycles of carbon and metals as well as plays an important role in the bioremediation of metals, radionuclides, and organic contaminants. The use of bacteria to facilitate the production of magnetite nanoparticles and the formation of carbonate minerals may provide new biotechnological processes for material synthesis and carbon sequestration. Metal-reducing bacteria were isolated from a variety of extreme environments, such as deep terrestrial subsurface, deep marine sediments, water near Hydrothemal vents, and alkaline ponds. Metal-reducing bacteria isolated from diverse extreme environments were able to reduce Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI) using short chain fatty acids and/or hydrogen as the electron donors. These bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite ($Fe_3$$O_4$), siderite ($FeCO_3$), calcite ($CaCO_3$), rhodochrosite ($MnCO_3$), vivianite [$Fe_3$($PO_4$)$_2$ .$8H_2$O], and uraninite ($UO_2$). Geochemical and environmental factors such as atmospheres, chemical milieu, and species of bacteria affected the extent of Fe(III)-reduction as well as the mineralogy and morphology of the crystalline iron mineral phases. Thermophilic bacteria use amorphous Fe(III)-oxyhydroxide plus metals (Co, Cr, Ni) as an electron acceptor and organic carbon as an electron donor to synthesize metal-substituted magnetite. Metal reducing bacteria were capable of $CO_2$conversion Into sparingly soluble carbonate minerals, such as siderite and calcite using amorphous Fe(III)-oxyhydroxide or metal-rich fly ash. These results indicate that microbial Fe(III)-reduction may not only play important roles in iron and carbon biogeochemistry in natural environments, but also be potentially useful f3r the synthesis of submicron-sized ferromagnetic materials.

Purification and Structural Analysis of Antitumor Polysaccharides Obtained from Ganoderma lucidum IY 009 (Ganoderma lucidum IY 009로 부터 분리된 항암성 다당류의 정제 및 구조분석)

  • Lee, Kweon-Haeng;Jeong, Hoon;Lee, June-Woo;Han, Man-Deuk;Choi, Kyoung-Sook;Oh, Doo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.190-196
    • /
    • 1994
  • Alkali soluble(AS) fraction, revealed the highest antitumor activity of the alkali extracted fractions of G. lucidum IY 009, was loaded on DEAE cellulose(OH$^{-}$ form) column. AS-1, AS-2, AS-3, AS-4 and AS-5 were obtained by stepwise elution with H$_{2}$O, 0.1 M NaHCO$_{3}$, 0.3 M NaHCO$_{3}$, 0.5 M NaHCO$_{3}$ and 0.5 N NaOH respectively, and their antitumor activities(I.R. %) against the sarcoma 180 were 97.5%, 68.0%, 73.0%, 81.0% and 66.0% respectively. AS-1 observed highest antitumor activity was appeared as single peak on the Sepharose CL-4B column chromatography, and their molecular weight was about 580,000 dalton. The carbohydrate content of AS-1 was 98.9%, their monosaccharide consisted of 67.5% of mannose, 22.5% of xylose, 5.8% of glucose, 1.8% of galactose and 2.0% of ribose. AS-1 was assumed $\alpha $linkaged xylomannan having infrared absorption at 864.3 cm$^{-1}$. The main alditol acetates of AS-1 were identified as 1,5-Di-O-acetyl1-2,3,4-Tri-O-methylxylitol, 1,4,5-Tro-O-acety1-2,3,6-Tri-O-methylmannitol and 1,3,4,5-Tetra-O-acety1-2,6-Di-O-methylmannitol by methylation analysis, and their molar ratio was 1 : 2 : 1. The core portion of AS-1 might be $\alpha $-(1$\longrightarrow $ 4)mannopyranosyl unit branched with side chain, C1 of xylopyranosyl residue linked to C3 of every 3 mannopyranosyl units, and the degree of polymerization of structural unit in AS-1 was about 835.

  • PDF

Identification of Maysin and Related Flavonid Analogues in Corn Silks (옥수수 수염에서 Maysin 및 유사물질의 동정)

  • Kim, Sun-Lim;Snook, Maurice E.;Kim, E-Hun;Park, Cheol-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.3
    • /
    • pp.151-157
    • /
    • 2000
  • This study was carried out to isolate and identify the maysin and related flavonoid analogues in corn silks. Silks were covered with silk bag to prevent pollination and were sampled at 3-5 days after silking. The silks were filled with 100% MeOH and stored at $0^{\circ}C$ until analysis. The MeOH extracts of corn silks were filtered and concentrated at 35-4$0^{\circ}C$. The ${CH}_2$${Cl}_2$ was added on the concentrated aqueous solution to remove the chlorophyll and lipids. The Cis open column (25mm$\times$54 cm) was washed and activated with serial treatment of 500$m\ell$ of 100% MeOH(twice)longrightarrow75% MeOH longrightarrow50% MeOHlongrightarrow30% MeOHlongrightarrow100% $H_2$O(2 times). The concentrated aqueous solution was applied to the $C_{18}$ column and washed with $H_2O$ several times to remove the sugars and water soluble pigments. Neochlorogenic acid, chlorogenic acid and 4-caffeoylquinic acid were eluted with 10% MeOH, and rhamosyl isoorientin was eluted with 30% MeOH, but maysin was eluted with 50% MeOH from the $C_18$ open column. Collected fractions were analyzed with HPLC by using revers-phase Ultras-phere $C_{18}$ column (4.6$\times$250mm, 5$\mu\textrm{m}$) and $H_2$O (10% MeOH containing 0.1% $H_3$${PO}_4$)/MeOH (100% MeOH containing 0.1% H$_3$PO$_4$) linear gradient from 20% to 90% MeOH for 35 minutes, a flow rate of 1 $m\ell$/min and detection at 340nm. The selected fractions were concentrated and applied to the silicic acid column. Maysin was eluted with 500$m\ell$ of 100% ethyl acetate from the silicic acid column for the first purification, and the purity of collected fractions was about 75%, but the purity from the second purification with the Cis column (1/2 $\times$ 43") was greater than 95%. FAB-MS spectral data was obtained with VG7O-VSEQ VG analytical fast atom bombardment mass (UK). $^1$H-NMR and $^{13}$ C-NMR data were obtained with Bruker DPX 400 MHz NMR spectrometers (German) in DMSO-d$_{6}$ at 400 and 100 MHz, respectively.vely.

  • PDF

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).